• Title/Summary/Keyword: Anomaly detection system

Search Result 299, Processing Time 0.052 seconds

Semi-Supervised Learning Based Anomaly Detection for License Plate OCR in Real Time Video

  • Kim, Bada;Heo, Junyoung
    • International journal of advanced smart convergence
    • /
    • v.9 no.1
    • /
    • pp.113-120
    • /
    • 2020
  • Recently, the license plate OCR system has been commercialized in a variety of fields and preferred utilizing low-cost embedded systems using only cameras. This system has a high recognition rate of about 98% or more for the environments such as parking lots where non-vehicle is restricted; however, the environments where non-vehicle objects are not restricted, the recognition rate is about 50% to 70%. This low performance is due to the changes in the environment by non-vehicle objects in real-time situations that occur anomaly data which is similar to the license plates. In this paper, we implement the appropriate anomaly detection based on semi-supervised learning for the license plate OCR system in the real-time environment where the appearance of non-vehicle objects is not restricted. In the experiment, we compare systems which anomaly detection is not implemented in the preceding research with the proposed system in this paper. As a result, the systems which anomaly detection is not implemented had a recognition rate of 77%; however, the systems with the semi-supervised learning based on anomaly detection had 88% of recognition rate. Using the techniques of anomaly detection based on the semi-supervised learning was effective in detecting anomaly data and it was helpful to improve the recognition rate of real-time situations.

A Design of FHIDS(Fuzzy logic based Hybrid Intrusion Detection System) using Naive Bayesian and Data Mining (나이브 베이지안과 데이터 마이닝을 이용한 FHIDS(Fuzzy Logic based Hybrid Intrusion Detection System) 설계)

  • Lee, Byung-Kwan;Jeong, Eun-Hee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.3
    • /
    • pp.158-163
    • /
    • 2012
  • This paper proposes an FHIDS(Fuzzy logic based Hybrid Intrusion Detection System) design that detects anomaly and misuse attacks by using a Naive Bayesian algorithm, Data Mining, and Fuzzy Logic. The NB-AAD(Naive Bayesian based Anomaly Attack Detection) technique using a Naive Bayesian algorithm within the FHIDS detects anomaly attacks. The DM-MAD(Data Mining based Misuse Attack Detection) technique using Data Mining within it analyzes the correlation rules among packets and detects new attacks or transformed attacks by generating the new rule-based patterns or by extracting the transformed rule-based patterns. The FLD(Fuzzy Logic based Decision) technique within it judges the attacks by using the result of the NB-AAD and DM-MAD. Therefore, the FHIDS is the hybrid attack detection system that improves a transformed attack detection ratio, and reduces False Positive ratio by making it possible to detect anomaly and misuse attacks.

Development of deep autoencoder-based anomaly detection system for HANARO

  • Seunghyoung Ryu;Byoungil Jeon ;Hogeon Seo ;Minwoo Lee;Jin-Won Shin;Yonggyun Yu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.475-483
    • /
    • 2023
  • The high-flux advanced neutron application reactor (HANARO) is a multi-purpose research reactor at the Korea Atomic Energy Research Institute (KAERI). HANARO has been used in scientific and industrial research and developments. Therefore, stable operation is necessary for national science and industrial prospects. This study proposed an anomaly detection system based on deep learning, that supports the stable operation of HANARO. The proposed system collects multiple sensor data, displays system information, analyzes status, and performs anomaly detection using deep autoencoder. The system comprises communication, visualization, and anomaly-detection modules, and the prototype system is implemented on site in 2021. Finally, an analysis of the historical data and synthetic anomalies was conducted to verify the overall system; simulation results based on the historical data show that 12 cases out of 19 abnormal events can be detected in advance or on time by the deep learning AD model.

A Criterion on Profiling for Anomaly Detection (이상행위 탐지를 위한 프로파일링 기준)

  • 조혁현;정희택;김민수;노봉남
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.3
    • /
    • pp.544-551
    • /
    • 2003
  • Internet as being generalized, intrusion detection system is needed to protect computer system from intrusions synthetically. We propose a criterion on profiling for intrusion detection system using anomaly detection. We present the cause of false positive on profiling and propose anomaly method to control this. Finally, we propose similarity function to decide whether anomaly action or not for user pattern using pattern database.

Effective Dimensionality Reduction of Payload-Based Anomaly Detection in TMAD Model for HTTP Payload

  • Kakavand, Mohsen;Mustapha, Norwati;Mustapha, Aida;Abdullah, Mohd Taufik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3884-3910
    • /
    • 2016
  • Intrusion Detection System (IDS) in general considers a big amount of data that are highly redundant and irrelevant. This trait causes slow instruction, assessment procedures, high resource consumption and poor detection rate. Due to their expensive computational requirements during both training and detection, IDSs are mostly ineffective for real-time anomaly detection. This paper proposes a dimensionality reduction technique that is able to enhance the performance of IDSs up to constant time O(1) based on the Principle Component Analysis (PCA). Furthermore, the present study offers a feature selection approach for identifying major components in real time. The PCA algorithm transforms high-dimensional feature vectors into a low-dimensional feature space, which is used to determine the optimum volume of factors. The proposed approach was assessed using HTTP packet payload of ISCX 2012 IDS and DARPA 1999 dataset. The experimental outcome demonstrated that our proposed anomaly detection achieved promising results with 97% detection rate with 1.2% false positive rate for ISCX 2012 dataset and 100% detection rate with 0.06% false positive rate for DARPA 1999 dataset. Our proposed anomaly detection also achieved comparable performance in terms of computational complexity when compared to three state-of-the-art anomaly detection systems.

Design of Anomaly Detection System Based on Big Data in Internet of Things (빅데이터 기반의 IoT 이상 장애 탐지 시스템 설계)

  • Na, Sung Il;Kim, Hyoung Joong
    • Journal of Digital Contents Society
    • /
    • v.19 no.2
    • /
    • pp.377-383
    • /
    • 2018
  • Internet of Things (IoT) is producing various data as the smart environment comes. The IoT data collection is used as important data to judge systems's status. Therefore, it is important to monitor the anomaly state of the sensor in real-time and to detect anomaly data. However, it is necessary to convert the IoT data into a normalized data structure for anomaly detection because of the variety of data structures and protocols. Thus, we can expect a good quality effect such as accurate analysis data quality and service quality. In this paper, we propose an anomaly detection system based on big data from collected sensor data. The proposed system is applied to ensure anomaly detection and keep data quality. In addition, we applied the machine learning model of support vector machine using anomaly detection based on time-series data. As a result, machine learning using preprocessed data was able to accurately detect and predict anomaly.

Normal Behavior Profiling based on Bayesian Network for Anomaly Intrusion Detection (이상 침입 탐지를 위한 베이지안 네트워크 기반의 정상행위 프로파일링)

  • 차병래;박경우;서재현
    • Journal of the Korea Society of Computer and Information
    • /
    • v.8 no.1
    • /
    • pp.103-113
    • /
    • 2003
  • Program Behavior Intrusion Detection Technique analyses system calls that called by daemon program or root authority, constructs profiles. and detectes anomaly intrusions effectively. Anomaly detections using system calls are detected only anomaly processes. But this has a Problem that doesn't detect affected various Part by anomaly processes. To improve this problem, the relation among system calls of processes is represented by bayesian probability values. Application behavior profiling by Bayesian Network supports anomaly intrusion informations . This paper overcomes the Problems of various intrusion detection models we Propose effective intrusion detection technique using Bayesian Networks. we have profiled concisely normal behaviors using behavior context. And this method be able to detect new intrusions or modificated intrusions we had simulation by proposed normal behavior profiling technique using UNM data.

  • PDF

Anomaly Detection of Facilities and Non-disruptive Operation of Smart Factory Using Kubernetes

  • Jung, Guik;Ha, Hyunsoo;Lee, Sangjun
    • Journal of Information Processing Systems
    • /
    • v.17 no.6
    • /
    • pp.1071-1082
    • /
    • 2021
  • Since the smart factory has been recently recognized as an industrial core requirement, various mechanisms to ensure efficient and stable operation have attracted much attention. This attention is based on the fact that in a smart factory environment where operating processes, such as facility control, data collection, and decision making are automated, the disruption of processes due to problems such as facility anomalies causes considerable losses. Although many studies have considered methods to prevent such losses, few have investigated how to effectively apply the solutions. This study proposes a Kubernetes based system applied in a smart factory providing effective operation and facility management. To develop the system, we employed a useful and popular open source project, and adopted deep learning based anomaly detection model for multi-sensor anomaly detection. This can be easily modified without interruption by changing the container image for inference. Through experiments, we have verified that the proposed method can provide system stability through nondisruptive maintenance, monitoring and non-disruptive updates for anomaly detection models.

An Adaptive Anomaly Detection Model Design based on Artificial Immune System in Central Network (중앙 집중형 망에서 인공면역체계 기반의 적응적 망 이상 상태 탐지 모델 설계)

  • Yoo, Kyoung-Min;Yang, Won-Hyuk;Lee, Sang-Yeol;Jeong, Hye-Ryun;So, Won-Ho;Kim, Young-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3B
    • /
    • pp.311-317
    • /
    • 2009
  • The traditional network anomaly detection systems execute the threshold-based detection without considering dynamic network environments, which causes false positive and limits an effective resource utilization. To overcome the drawbacks, we present the adaptive network anomaly detection model based on artificial immune system (AIS) in centralized network. AIS is inspired from human immune system that has learning, adaptation and memory. In our proposed model, the interaction between dendritic cell and T-cell of human immune system is adopted. We design the main components, such as central node and router node, and define functions of them. The central node analyzes the anomaly information received from the related router nodes, decides response policy and sends the policy to corresponding nodes. The router node consists of detector module and responder module. The detector module perceives the anomaly depending on learning data and the responder module settles the anomaly according to the policy received from central node. Finally we evaluate the possibility of the proposed detection model through simulation.

Anomaly detection of isolating switch based on single shot multibox detector and improved frame differencing

  • Duan, Yuanfeng;Zhu, Qi;Zhang, Hongmei;Wei, Wei;Yun, Chung Bang
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.811-825
    • /
    • 2021
  • High-voltage isolating switches play a paramount role in ensuring the safety of power supply systems. However, their exposure to outdoor environmental conditions may cause serious physical defects, which may result in great risk to power supply systems and society. Image processing-based methods have been used for anomaly detection. However, their accuracy is affected by numerous uncertainties due to manually extracted features, which makes the anomaly detection of isolating switches still challenging. In this paper, a vision-based anomaly detection method for isolating switches, which uses the rotational angle of the switch system for more accurate and direct anomaly detection with the help of deep learning (DL) and image processing methods (Single Shot Multibox Detector (SSD), improved frame differencing method, and Hough transform), is proposed. The SSD is a deep learning method for object classification and localization. In addition, an improved frame differencing method is introduced for better feature extraction and a hough transform method is adopted for rotational angle calculation. A number of experiments are conducted for anomaly detection of single and multiple switches using video frames. The results of the experiments demonstrate that the SSD outperforms the You-Only-Look-Once network. The effectiveness and robustness of the proposed method have been proven under various conditions, such as different illumination and camera locations using 96 videos from the experiments.