• 제목/요약/키워드: Anomaly detection

검색결과 670건 처리시간 0.092초

데이터센터 장애 예방을 위한 인프라 이상징후 분석: RRCF와 Prophet Ensemble 분석 기반 (Infrastructure Anomaly Analysis for Data-center Failure Prevention: Based on RRCF and Prophet Ensemble Analysis)

  • 신현종;김성근;천병환;진경복;양승정
    • 한국빅데이터학회지
    • /
    • 제7권1호
    • /
    • pp.113-124
    • /
    • 2022
  • 데이터센터의 장애 예방을 위해 머신러닝과 빅데이터를 활용한 다양한 방법들이 적용되어 왔다. 그러나 개별 장비 기반의 성능지표를 참조하거나, 인프라 운영환경을 고려하지 않은 접근방법으로 실제 활용되는 데에는 많은 한계가 있었다. 이에 본 연구에서는 개별 인프라 장비들의 성능지표를 통합 모니터링하며, 다양한 장비들의 성능지표를 구간화, 등급화 하여 단일수치화를 진행한다. 인프라 운영에 대한 경험치 기반으로 데이터 전처리를 수행하며, RRCF(Robust Random Cut Forest)분석과 Prophet 분석 모델을 앙상블하여 이상징후 검출에 신뢰도 있는 분석결과를 도출하였다. 데이터센터 내 운영담당자들의 접근을 용이하게 하기 위해 장애분석시스템을 구현하여 데이터센터 장애의 선제 대응과 적정한 튜닝시점을 제시할 수 있다.

교통 네트워크 모델 기반 이상 운항 선박 식별에 관한 연구 (Navigational Anomaly Detection using a Traffic Network Model)

  • 오재용;김혜진
    • 해양환경안전학회지
    • /
    • 제29권7호
    • /
    • pp.828-835
    • /
    • 2023
  • 해상교통관제센터(VTS)의 관제사는 구역 내 교통 상황을 빠르고 정확하게 파악하여 관제가 필요한 선박에게 정보를 제공하는 역할을 수행한다. 그러나 교통량이 급격히 증가하는 경우 관제사의 업무 부하로 인해 관제 공백이 발생하기도 한다. 이러한 이유에서 관제사의 업무 부하를 줄이고, 일관성 있는 관제 정보를 제공할 수 있는 관제 지원 기술의 개발이 필요한 실정이며, 본 논문에서는 구역 내 이상 운항 선박을 자동으로 식별하는 모델을 제안하였다. 제안하는 이상 운항 식별 모델은 규칙 기반 모델, 위치 기반 모델, 맥락 기반 모델로 구성되며, 대상 해역의 교통 특성에 최적화된 교통 네트워크 모델을 사용하는 특징이 있다. 구현된 모델은 시범센터(대산항 VTS)에서 수집되는 실해역 데이터를 적용하여 실험을 수행하였다. 실험을 통해 실해역의 다양한 이상 운항 상황이 자동으로 식별됨을 확인하였고, 전문가 평가를 통해 식별 결과를 검증하였다.

GRU 기반의 농장 내 전력량 관리 및 이상탐지 자동화 시스템 설계 (Designing an GRU-based on-farm power management and anomaly detection automation system)

  • 김현서;이명훈
    • 스마트미디어저널
    • /
    • 제13권1호
    • /
    • pp.18-23
    • /
    • 2024
  • 스마트팜의 전력 효율 관리는 기후 변화와의 연계로 중요성을 가지고 있다. 기후 변화가 농업에 부정적인 영향을 미치는 가운데, 미래의 농업은 스마트팜을 활용하여 기후 영향을 최소화할 것으로 예상되고 있으나 스마트팜의 전력 소비는 현재의 전기 생산 체제로 인해 기후 위기를 악화시킬 우려가 있다. 이에 따라 스마트팜의 전력 사용을 효율적으로 관리하고 최적화하는 것이 필수적이다. 본 연구에서는 스마트팜 장비의 전력 사용량을 실시간으로 모니터링하고, GRU를 활용하여 1시간 뒤의 전력 사용량을 예측하는 시스템을 제안한다. CT 센서를 설치하여 전력량을 수집하고, 이를 분석하여 이상 패턴을 탐지하고 예방한다. 또한 IoT 기술과 결합하여 전체 전력 사용량을 효율적으로 관리하고 모니터링한다. 이를 통해 전력 사용을 최적화하고, 에너지 효율성을 향상시켜 탄소 배출을 줄일 수 있다. 이 시스템은 스마트팜의 에너지 관리뿐아니라 전반적인 에너지 사용 효율성을 향상시킬 것으로 기대된다.

순열 엔트로피 기반 사이버 물리 시스템의 조작된 운영 데이터 식별 방안 연구 (Research on Identifying Manipulated Operation Data of Cyber-Physical System Based on Permutation Entropy)

  • 김가경;엄익채
    • 융합보안논문지
    • /
    • 제24권3호
    • /
    • pp.67-79
    • /
    • 2024
  • 에너지 발전소 등을 포함한 주요 기반시설을 공격 대상으로 하는 공격자들은 지능적이고 정교화된 공격을 수행하는 동시에, 목표에 달성할 때까지 공격 흔적을 은닉한다. 특히 실제 물리적 환경과 연결되어 있는 사이버 물리 시스템의 운영 데이터를 조작하는 것은 사람의 안전에 직접적으로 영향을 줄 수 있다. 사이버 물리 시스템의 특성에 따라 일반적인 정보 기술 환경에서의 이상 식별 및 탐지 방법과는 차별적인 접근법이 필요하다. 이에 본 연구에서는 사이버 물리 시스템의 특성을 고려하기 위하여 재귀적 필터링을 수행하고, 악의적으로 조작된 운영 데이터를 식별하기 위한 엔트로피 기반의 접근법이 통합된 방법론을 제안한다. 공개된 산업제어시스템 보안 데이터셋을 기반으로 합성한 데이터에 제안하는 방법론을 적용한 결과, 조작된 운영 데이터를 효과적으로 식별할 수 있음을 검증하였다.

Novelty detection을 이용한 BIM객체와 IFC 클래스 간 매핑의 무결성 검토에 관한 연구 (Applying Novelty Detection for Checking the Integrity of BIM Entity to IFC Class Associations)

  • 구본상;신병진
    • 한국건설관리학회논문집
    • /
    • 제18권6호
    • /
    • pp.78-88
    • /
    • 2017
  • 건설사업의 생애주기 단계별로 BIM의 활용도가 다양해지면서 이를 위한 전문화된 소프트웨어가 증가하고 있다. 이들 소프트웨어 간 BIM 정보 교환 시 상호호환성이 중요하며, 이때 국제표준 포맷인 IFC 데이터 모델을 채택하고 있다. 그러나 BIM 데이터를 IFC로 변환하기 위해서는 개별 객체에 IFC 클래스를 매핑해야 하는데, 현재까지 본 작업은 수동 작업으로 이뤄지고 있어, 매핑 상의 오류나 누락이 발생하게 된다. 본 연구에서는 BIM 객체 및 IFC 클래스 간 매핑의 무결성 검증을 위해 이상탐지분석 기법 중 하나인 Novelty detection을 적용하였다. 동일한 IFC 클래스의 객체들은 기하형상이 유사하다는 전제하에. 매핑이 잘못된 객체를 이상치로 판별하고자 하는 것이다. 3개의 BIM모델로부터 IFC 클래스별로 객체를 분류한 후 이 중 2개의 IFC 클래스(벽체 및 문)에 대해 one-class SVM을 학습시키고 검증하였다. 분석한 결과 총 160개의 이상치 중 141개를 정확하게 분류하여 이상치 판별능력이 높게 나왔다. Novelty detection 기법은 다중 경계면을 형성하고 사전적 학습이 가능하다는 점에서 높은 예측력을 발휘하여, 기존 방식이나 타 알고리즘보다 매핑 오류를 검증하는데 더 적합한 방법인 것으로 확인되었다.

상수도관망 재난관리 및 복구를 위한 데이터기반 이상탐지 방법론 개발 (Data-driven event detection method for efficient management and recovery of water distribution system man-made disasters)

  • 정동휘;안재현
    • 한국수자원학회논문집
    • /
    • 제51권8호
    • /
    • pp.703-711
    • /
    • 2018
  • 상수도관의 파열은 과도한 압력, 노후화, 온도변화 나 지진 등에 의한 지반이동에 의해 발생한다. 상수도관 파열이 대규모 단수, 싱크홀 등과 같은 더 심각한 피해 이어지지 않도록 신속하게 탐지 및 대응하는 것이 중요하다. 본 연구에서는 상수도관 파열 탐지를 위해 개선 Western Electric Company (WECO) 방법을 개발하였다. 개선 WECO 방법은 통계적공정관리기법 중 하나인 기존 WECO 방법에 임계치 조정자(w)를 추가하여 대상 네트워크에 적합한 이상탐지 의사결정을 할 수 있도록 했다. 개발된 개선 WECO 방법을 미국 텍사스 오스틴 관망에 적용 및 검증하였다. 상수도관 파열 발생 시 측정한 비정상데이터와 수요량 변동만 고려한 정상데이터를 이용하여 기존 및 개선 WECO 방법을 비교하였다. 최적 임계치 조정자 w값을 결정하기 위해 민감도 분석을 수행하였으며, 다양한 계측시간 간격 데이터(dt = 5, 10, 15분 등)의 영향도 분석하였다. 각 경우 별 탐지성능은 탐지확률, 오경보확률, 평균탐지시간을 계산하여 비교하였다. 본 연구에서는 도출된 결과를 바탕으로 WECO 방법을 실제 상수도관 파열 탐지에 적용하기 위한 가이드라인을 제공한다.

사물인터넷을 위한 침입탐지 및 자가 치료 시스템의 설계 (Design of an Intrusion Detection and Self-treatment System for IoT)

  • 오선진
    • 한국인터넷방송통신학회논문지
    • /
    • 제18권5호
    • /
    • pp.9-15
    • /
    • 2018
  • 본격 5G 통신시대의 도래와 더불어, 최근 사물인터넷과 연관된 융합기술의 발전이 급속도로 진행되고 있다. 일상생활의 여러 분야에서 다양한 센서 등을 이용한 사물인터넷 융합기술이 활발하게 응용되고 있으며, 많은 사람들 사이에서의 대중화가 성공적으로 이루어지고 있는 상황이다. 하지만, 많은 사물들이 네트워크에 연결되어 이루어지는 사물인터넷에서의 보안은 극히 취약하며 시급히 해결되어야 할 과제 중의 하나이다. 본 연구에서는 이러한 문제를 해결하기 위해 사물인터넷에 외부로 부터의 침입 또는 비정상적인 행위(anomaly)가 있는지를 실시간으로 탐지하고, 침입이 탐지되면 침입 유형에 따른 해당 치료 백신 프로그램을 가동시켜 자가 치료를 수행하도록 하는 사물 인터넷을 위한 침입탐지 및 자가 치료 시스템을 설계하고자 한다. 아울러, 사물인터넷으로의 침입 유행을 차단하기 위하여 유사 상황 빈도에 따른 침임 경고 메시지 방송 등을 고려한다.

유전 알고리즘 기반의 비정상 행위 탐지를 위한 특징선택 (Feature Selection for Anomaly Detection Based on Genetic Algorithm)

  • 서재현
    • 한국융합학회논문지
    • /
    • 제9권7호
    • /
    • pp.1-7
    • /
    • 2018
  • 데이터 전처리 기법 중 하나인 특징 선택은 대규모 데이터셋을 다루는 다양한 응용분야에서 주요 연구 분야 중 하나로 각광받고 있다. 특징 선택은 패턴 인식, 기계학습 및 데이터 마이닝에서 사용됐고, 최근에는 텍스트 분류, 이미지 검색, 침입 탐지 및 게놈 분석과 같은 다양한 분야에 널리 적용되고 있다. 제안 방법은 메타 휴리스틱 알고리즘 중의 하나인 유전 알고리즘을 기반으로 한다. 특징 부분 집합을 찾는 방법은 크게 필터(filter) 방법과 래퍼(wrapper) 방법이 있는데, 본 연구에서는 최적의 특징 부분 집합을 찾기 위해 실제 분류기를 사용한 평가를 하는 래퍼 방법을 사용한다. 실험에 사용한 훈련 데이터셋은 클래스 불균형이 심하여 희소클래스에 대한 분류 성능을 높이기 어렵다. SMOTE 기법을 적용한 훈련 데이터셋을 사용하여 특징 선택을 하고 다양한 기계학습 알고리즘을 사용하여 선택한 특징들의 성능을 평가한다.

Anomalous Trajectory Detection in Surveillance Systems Using Pedestrian and Surrounding Information

  • Doan, Trung Nghia;Kim, Sunwoong;Vo, Le Cuong;Lee, Hyuk-Jae
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제5권4호
    • /
    • pp.256-266
    • /
    • 2016
  • Concurrently detected and annotated abnormal events can have a significant impact on surveillance systems. By considering the specific domain of pedestrian trajectories, this paper presents two main contributions. First, as introduced in much of the work on trajectory-based anomaly detection in the literature, only information about pedestrian paths, such as direction and speed, is considered. Differing from previous work, this paper proposes a framework that deals with additional types of trajectory-based anomalies. These abnormal events take places when a person enters prohibited areas. Those restricted regions are constructed by an online learning algorithm that uses surrounding information, including detected pedestrians and background scenes. Second, a simple data-boosting technique is introduced to overcome a lack of training data; such a problem particularly challenges all previous work, owing to the significantly low frequency of abnormal events. This technique only requires normal trajectories and fundamental information about scenes to increase the amount of training data for both normal and abnormal trajectories. With the increased amount of training data, the conventional abnormal trajectory classifier is able to achieve better prediction accuracy without falling into the over-fitting problem caused by complex learning models. Finally, the proposed framework (which annotates tracks that enter prohibited areas) and a conventional abnormal trajectory detector (using the data-boosting technique) are integrated to form a united detector. Such a detector deals with different types of anomalous trajectories in a hierarchical order. The experimental results show that all proposed detectors can effectively detect anomalous trajectories in the test phase.

축사에서 딥러닝을 이용한 질병개체 파악방안 (Fast Detection of Disease in Livestock based on Deep Learning)

  • 이웅섭;김성환;류종열;반태원
    • 한국정보통신학회논문지
    • /
    • 제21권5호
    • /
    • pp.1009-1015
    • /
    • 2017
  • 최근 사물 인터넷 기술의 활용을 통해 가축 및 축사 관련 빅데이터 축적이 가능해 졌다. 이러한 빅 데이터를 기반으로 다양한 기계학습방안들이 가축관리에 적용되어 축산농가의 생산성을 크게 향상시키고 있다. 본 연구에서는 현재 가장 주목받고 있는 기계학습 기술인 딥러닝을 적용한 질병개체 파악방안을 제안한다. 제안한 방안에서는 정상상태와 질병상태의 가축들이 섞여있는 환경에서 상태에 따라 다른 생체데이터 특성을 지닐 때 심층신경망을 이용하여 가축의 상태를 분류한다. 제안 방안은 가축 생체데이터의 통계적 특성을 모르는 상황에서도 학습을 통해서 가축의 상태를 정확하게 분류할 수 있다. 질병개체의 정확한 파악은 구제역과 같은 전염성 질병을 예방하는데 큰 도움이 될 수 있다.