데이터센터의 장애 예방을 위해 머신러닝과 빅데이터를 활용한 다양한 방법들이 적용되어 왔다. 그러나 개별 장비 기반의 성능지표를 참조하거나, 인프라 운영환경을 고려하지 않은 접근방법으로 실제 활용되는 데에는 많은 한계가 있었다. 이에 본 연구에서는 개별 인프라 장비들의 성능지표를 통합 모니터링하며, 다양한 장비들의 성능지표를 구간화, 등급화 하여 단일수치화를 진행한다. 인프라 운영에 대한 경험치 기반으로 데이터 전처리를 수행하며, RRCF(Robust Random Cut Forest)분석과 Prophet 분석 모델을 앙상블하여 이상징후 검출에 신뢰도 있는 분석결과를 도출하였다. 데이터센터 내 운영담당자들의 접근을 용이하게 하기 위해 장애분석시스템을 구현하여 데이터센터 장애의 선제 대응과 적정한 튜닝시점을 제시할 수 있다.
해상교통관제센터(VTS)의 관제사는 구역 내 교통 상황을 빠르고 정확하게 파악하여 관제가 필요한 선박에게 정보를 제공하는 역할을 수행한다. 그러나 교통량이 급격히 증가하는 경우 관제사의 업무 부하로 인해 관제 공백이 발생하기도 한다. 이러한 이유에서 관제사의 업무 부하를 줄이고, 일관성 있는 관제 정보를 제공할 수 있는 관제 지원 기술의 개발이 필요한 실정이며, 본 논문에서는 구역 내 이상 운항 선박을 자동으로 식별하는 모델을 제안하였다. 제안하는 이상 운항 식별 모델은 규칙 기반 모델, 위치 기반 모델, 맥락 기반 모델로 구성되며, 대상 해역의 교통 특성에 최적화된 교통 네트워크 모델을 사용하는 특징이 있다. 구현된 모델은 시범센터(대산항 VTS)에서 수집되는 실해역 데이터를 적용하여 실험을 수행하였다. 실험을 통해 실해역의 다양한 이상 운항 상황이 자동으로 식별됨을 확인하였고, 전문가 평가를 통해 식별 결과를 검증하였다.
스마트팜의 전력 효율 관리는 기후 변화와의 연계로 중요성을 가지고 있다. 기후 변화가 농업에 부정적인 영향을 미치는 가운데, 미래의 농업은 스마트팜을 활용하여 기후 영향을 최소화할 것으로 예상되고 있으나 스마트팜의 전력 소비는 현재의 전기 생산 체제로 인해 기후 위기를 악화시킬 우려가 있다. 이에 따라 스마트팜의 전력 사용을 효율적으로 관리하고 최적화하는 것이 필수적이다. 본 연구에서는 스마트팜 장비의 전력 사용량을 실시간으로 모니터링하고, GRU를 활용하여 1시간 뒤의 전력 사용량을 예측하는 시스템을 제안한다. CT 센서를 설치하여 전력량을 수집하고, 이를 분석하여 이상 패턴을 탐지하고 예방한다. 또한 IoT 기술과 결합하여 전체 전력 사용량을 효율적으로 관리하고 모니터링한다. 이를 통해 전력 사용을 최적화하고, 에너지 효율성을 향상시켜 탄소 배출을 줄일 수 있다. 이 시스템은 스마트팜의 에너지 관리뿐아니라 전반적인 에너지 사용 효율성을 향상시킬 것으로 기대된다.
에너지 발전소 등을 포함한 주요 기반시설을 공격 대상으로 하는 공격자들은 지능적이고 정교화된 공격을 수행하는 동시에, 목표에 달성할 때까지 공격 흔적을 은닉한다. 특히 실제 물리적 환경과 연결되어 있는 사이버 물리 시스템의 운영 데이터를 조작하는 것은 사람의 안전에 직접적으로 영향을 줄 수 있다. 사이버 물리 시스템의 특성에 따라 일반적인 정보 기술 환경에서의 이상 식별 및 탐지 방법과는 차별적인 접근법이 필요하다. 이에 본 연구에서는 사이버 물리 시스템의 특성을 고려하기 위하여 재귀적 필터링을 수행하고, 악의적으로 조작된 운영 데이터를 식별하기 위한 엔트로피 기반의 접근법이 통합된 방법론을 제안한다. 공개된 산업제어시스템 보안 데이터셋을 기반으로 합성한 데이터에 제안하는 방법론을 적용한 결과, 조작된 운영 데이터를 효과적으로 식별할 수 있음을 검증하였다.
건설사업의 생애주기 단계별로 BIM의 활용도가 다양해지면서 이를 위한 전문화된 소프트웨어가 증가하고 있다. 이들 소프트웨어 간 BIM 정보 교환 시 상호호환성이 중요하며, 이때 국제표준 포맷인 IFC 데이터 모델을 채택하고 있다. 그러나 BIM 데이터를 IFC로 변환하기 위해서는 개별 객체에 IFC 클래스를 매핑해야 하는데, 현재까지 본 작업은 수동 작업으로 이뤄지고 있어, 매핑 상의 오류나 누락이 발생하게 된다. 본 연구에서는 BIM 객체 및 IFC 클래스 간 매핑의 무결성 검증을 위해 이상탐지분석 기법 중 하나인 Novelty detection을 적용하였다. 동일한 IFC 클래스의 객체들은 기하형상이 유사하다는 전제하에. 매핑이 잘못된 객체를 이상치로 판별하고자 하는 것이다. 3개의 BIM모델로부터 IFC 클래스별로 객체를 분류한 후 이 중 2개의 IFC 클래스(벽체 및 문)에 대해 one-class SVM을 학습시키고 검증하였다. 분석한 결과 총 160개의 이상치 중 141개를 정확하게 분류하여 이상치 판별능력이 높게 나왔다. Novelty detection 기법은 다중 경계면을 형성하고 사전적 학습이 가능하다는 점에서 높은 예측력을 발휘하여, 기존 방식이나 타 알고리즘보다 매핑 오류를 검증하는데 더 적합한 방법인 것으로 확인되었다.
상수도관의 파열은 과도한 압력, 노후화, 온도변화 나 지진 등에 의한 지반이동에 의해 발생한다. 상수도관 파열이 대규모 단수, 싱크홀 등과 같은 더 심각한 피해 이어지지 않도록 신속하게 탐지 및 대응하는 것이 중요하다. 본 연구에서는 상수도관 파열 탐지를 위해 개선 Western Electric Company (WECO) 방법을 개발하였다. 개선 WECO 방법은 통계적공정관리기법 중 하나인 기존 WECO 방법에 임계치 조정자(w)를 추가하여 대상 네트워크에 적합한 이상탐지 의사결정을 할 수 있도록 했다. 개발된 개선 WECO 방법을 미국 텍사스 오스틴 관망에 적용 및 검증하였다. 상수도관 파열 발생 시 측정한 비정상데이터와 수요량 변동만 고려한 정상데이터를 이용하여 기존 및 개선 WECO 방법을 비교하였다. 최적 임계치 조정자 w값을 결정하기 위해 민감도 분석을 수행하였으며, 다양한 계측시간 간격 데이터(dt = 5, 10, 15분 등)의 영향도 분석하였다. 각 경우 별 탐지성능은 탐지확률, 오경보확률, 평균탐지시간을 계산하여 비교하였다. 본 연구에서는 도출된 결과를 바탕으로 WECO 방법을 실제 상수도관 파열 탐지에 적용하기 위한 가이드라인을 제공한다.
본격 5G 통신시대의 도래와 더불어, 최근 사물인터넷과 연관된 융합기술의 발전이 급속도로 진행되고 있다. 일상생활의 여러 분야에서 다양한 센서 등을 이용한 사물인터넷 융합기술이 활발하게 응용되고 있으며, 많은 사람들 사이에서의 대중화가 성공적으로 이루어지고 있는 상황이다. 하지만, 많은 사물들이 네트워크에 연결되어 이루어지는 사물인터넷에서의 보안은 극히 취약하며 시급히 해결되어야 할 과제 중의 하나이다. 본 연구에서는 이러한 문제를 해결하기 위해 사물인터넷에 외부로 부터의 침입 또는 비정상적인 행위(anomaly)가 있는지를 실시간으로 탐지하고, 침입이 탐지되면 침입 유형에 따른 해당 치료 백신 프로그램을 가동시켜 자가 치료를 수행하도록 하는 사물 인터넷을 위한 침입탐지 및 자가 치료 시스템을 설계하고자 한다. 아울러, 사물인터넷으로의 침입 유행을 차단하기 위하여 유사 상황 빈도에 따른 침임 경고 메시지 방송 등을 고려한다.
데이터 전처리 기법 중 하나인 특징 선택은 대규모 데이터셋을 다루는 다양한 응용분야에서 주요 연구 분야 중 하나로 각광받고 있다. 특징 선택은 패턴 인식, 기계학습 및 데이터 마이닝에서 사용됐고, 최근에는 텍스트 분류, 이미지 검색, 침입 탐지 및 게놈 분석과 같은 다양한 분야에 널리 적용되고 있다. 제안 방법은 메타 휴리스틱 알고리즘 중의 하나인 유전 알고리즘을 기반으로 한다. 특징 부분 집합을 찾는 방법은 크게 필터(filter) 방법과 래퍼(wrapper) 방법이 있는데, 본 연구에서는 최적의 특징 부분 집합을 찾기 위해 실제 분류기를 사용한 평가를 하는 래퍼 방법을 사용한다. 실험에 사용한 훈련 데이터셋은 클래스 불균형이 심하여 희소클래스에 대한 분류 성능을 높이기 어렵다. SMOTE 기법을 적용한 훈련 데이터셋을 사용하여 특징 선택을 하고 다양한 기계학습 알고리즘을 사용하여 선택한 특징들의 성능을 평가한다.
Doan, Trung Nghia;Kim, Sunwoong;Vo, Le Cuong;Lee, Hyuk-Jae
IEIE Transactions on Smart Processing and Computing
/
제5권4호
/
pp.256-266
/
2016
Concurrently detected and annotated abnormal events can have a significant impact on surveillance systems. By considering the specific domain of pedestrian trajectories, this paper presents two main contributions. First, as introduced in much of the work on trajectory-based anomaly detection in the literature, only information about pedestrian paths, such as direction and speed, is considered. Differing from previous work, this paper proposes a framework that deals with additional types of trajectory-based anomalies. These abnormal events take places when a person enters prohibited areas. Those restricted regions are constructed by an online learning algorithm that uses surrounding information, including detected pedestrians and background scenes. Second, a simple data-boosting technique is introduced to overcome a lack of training data; such a problem particularly challenges all previous work, owing to the significantly low frequency of abnormal events. This technique only requires normal trajectories and fundamental information about scenes to increase the amount of training data for both normal and abnormal trajectories. With the increased amount of training data, the conventional abnormal trajectory classifier is able to achieve better prediction accuracy without falling into the over-fitting problem caused by complex learning models. Finally, the proposed framework (which annotates tracks that enter prohibited areas) and a conventional abnormal trajectory detector (using the data-boosting technique) are integrated to form a united detector. Such a detector deals with different types of anomalous trajectories in a hierarchical order. The experimental results show that all proposed detectors can effectively detect anomalous trajectories in the test phase.
최근 사물 인터넷 기술의 활용을 통해 가축 및 축사 관련 빅데이터 축적이 가능해 졌다. 이러한 빅 데이터를 기반으로 다양한 기계학습방안들이 가축관리에 적용되어 축산농가의 생산성을 크게 향상시키고 있다. 본 연구에서는 현재 가장 주목받고 있는 기계학습 기술인 딥러닝을 적용한 질병개체 파악방안을 제안한다. 제안한 방안에서는 정상상태와 질병상태의 가축들이 섞여있는 환경에서 상태에 따라 다른 생체데이터 특성을 지닐 때 심층신경망을 이용하여 가축의 상태를 분류한다. 제안 방안은 가축 생체데이터의 통계적 특성을 모르는 상황에서도 학습을 통해서 가축의 상태를 정확하게 분류할 수 있다. 질병개체의 정확한 파악은 구제역과 같은 전염성 질병을 예방하는데 큰 도움이 될 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.