• Title/Summary/Keyword: Anomaly detection

Search Result 670, Processing Time 0.022 seconds

An Analysis of Intrusion Pattern Based on Backpropagation Algorithm (역전파 알고리즘 기반의 침입 패턴 분석)

  • Woo Chong-Woo;Kim Sang-Young
    • Journal of Internet Computing and Services
    • /
    • v.5 no.5
    • /
    • pp.93-103
    • /
    • 2004
  • The main function of the intrusion Detection System (IDS) usee to be more or less passive detection of the intrusion evidences, but recently it is developed with more diverse types and methodologies. Especially, it is required that the IDS should process large system audit data fast enough. Therefore the data mining or neural net algorithm is being focused on, since they could satisfy those situations. In this study, we first surveyed and analyzed the several recent intrusion trends and types. And then we designed and implemented an IDS using back-propagation algorithm of the neural net, which could provide more effective solution. The distinctive feature of our study could be stated as follows. First, we designed the system that allows both the Anomaly dection and the Misuse detection. Second, we carried out the intrusion analysis experiment by using the reliable KDD Cup ‘99 data, which would provide us similar results compared to the real data. Finally, we designed the system based on the object-oriented concept, which could adapt to the other algorithms easily.

  • PDF

A Statistic-based Response System against DDoS Using Legitimated IP Table (검증된 IP 테이블을 사용한 통계 기반 DDoS 대응 시스템)

  • Park, Pilyong;Hong, Choong-Seon;Choi, Sanghyun
    • The KIPS Transactions:PartC
    • /
    • v.12C no.6 s.102
    • /
    • pp.827-838
    • /
    • 2005
  • DDoS (Distributed Denial of Service) attack is a critical threat to current Internet. To solve the detection and response of DDoS attack on BcN, we have investigated detection algorithms of DDoS and Implemented anomaly detection modules. Recently too many technologies of the detection and prevention have developed, but it is difficult that the IDS distinguishes normal traffic from the DDoS attack Therefore, when the DDoS attack is detected by the IDS, the firewall just discards all over-bounded traffic for a victim or absolutely decreases the threshold of the router. That is just only a method for preventing the DDoS attack. This paper proposed the mechanism of response for the legitimated clients to be protected Then, we have designed and implemented the statistic based system that has the automated detection and response functionality against DDoS on Linux Zebra router environment.

Fault Detection of Reactive Ion Etching Using Time Series Support Vector Machine (Time Series Support Vector Machine을 이용한 Reactive Ion Etching의 오류검출 및 분석)

  • Park Young-Kook;Han Seung-Soo;Hong Sang-J.
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.247-250
    • /
    • 2006
  • Maximizing the productivity in reactive ion etching, early detection of process equipment anomaly became crucial in current high volume semiconductor manufacturing environment. To address the importance of the process fault detection for productivity, support vector machines (SVMs) is employed to assist the decision to determine process faults in real-time. SVMs for eleven steps of etching runs are established with data acquired from baseline runs, and they are further verified with the data from controlled (acceptable) and perturbed (unacceptable) runs. Then, each SVM is further utilized for the fault detection purpose utilizing control limits which is well understood in statistical process control chart. Utilizing SVMs, fault detection of reactive ion etching process is demonstrated with zero false alarm rate of the controlled runs on a run to run basis.

  • PDF

Enhanced Deep Feature Reconstruction : Texture Defect Detection and Segmentation through Preservation of Multi-scale Features (개선된 Deep Feature Reconstruction : 다중 스케일 특징의 보존을 통한 텍스쳐 결함 감지 및 분할)

  • Jongwook Si;Sungyoung Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.369-377
    • /
    • 2023
  • In the industrial manufacturing sector, quality control is pivotal for minimizing defect rates; inadequate management can result in additional costs and production delays. This study underscores the significance of detecting texture defects in manufactured goods and proposes a more precise defect detection technique. While the DFR(Deep Feature Reconstruction) model adopted an approach based on feature map amalgamation and reconstruction, it had inherent limitations. Consequently, we incorporated a new loss function using statistical methodologies, integrated a skip connection structure, and conducted parameter tuning to overcome constraints. When this enhanced model was applied to the texture category of the MVTec-AD dataset, it recorded a 2.3% higher Defect Segmentation AUC compared to previous methods, and the overall defect detection performance was improved. These findings attest to the significant contribution of the proposed method in defect detection through the reconstruction of feature map combinations.

Anomaly Detection in Livestock Environmental Time Series Data Using LSTM Autoencoders: A Comparison of Performance Based on Threshold Settings (LSTM 오토인코더를 활용한 축산 환경 시계열 데이터의 이상치 탐지: 경계값 설정에 따른 성능 비교)

  • Se Yeon Chung;Sang Cheol Kim
    • Smart Media Journal
    • /
    • v.13 no.4
    • /
    • pp.48-56
    • /
    • 2024
  • In the livestock industry, detecting environmental outliers and predicting data are crucial tasks. Outliers in livestock environment data, typically gathered through time-series methods, can signal rapid changes in the environment and potential unexpected epidemics. Prompt detection and response to these outliers are essential to minimize stress in livestock and reduce economic losses for farmers by early detection of epidemic conditions. This study employs two methods to experiment and compare performances in setting thresholds that define outliers in livestock environment data outlier detection. The first method is an outlier detection using Mean Squared Error (MSE), and the second is an outlier detection using a Dynamic Threshold, which analyzes variability against the average value of previous data to identify outliers. The MSE-based method demonstrated a 94.98% accuracy rate, while the Dynamic Threshold method, which uses standard deviation, showed superior performance with 99.66% accuracy.

Abnormal SIP Packet Detection Mechanism using Co-occurrence Information (공기 정보를 이용한 비정상 SIP 패킷 공격탐지 기법)

  • Kim, Deuk-Young;Lee, Hyung-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.130-140
    • /
    • 2010
  • SIP (Session Initiation Protocol) is a signaling protocol to provide IP-based VoIP (Voice over IP) service. However, many security vulnerabilities exist as the SIP protocol utilizes the existing IP based network. The SIP Malformed message attacks may cause malfunction on VoIP services by changing the transmitted SIP header information. Additionally, there are several threats such that an attacker can extract personal information on SIP client system by inserting malicious code into SIP header. Therefore, the alternative measures should be required. In this study, we analyzed the existing research on the SIP anomaly message detection mechanism against SIP attack. And then, we proposed a Co-occurrence based SIP packet analysis mechanism, which has been used on language processing techniques. We proposed a association rule generation and an attack detection technique by using the actual SIP session state. Experimental results showed that the average detection rate was 87% on SIP attacks in case of using the proposed technique.

A case study of red tide detection around Korean waters using satellite remote sensing

  • Suh, Y.S.;Lee, N.K.;Jang, L.H.;Kim, H.G.;Hwang, J.D.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.654-655
    • /
    • 2003
  • Korea has experienced 10 a Cochlodinium polykrikoides red tide outbreaks during the last 10 years (1993-2002). The monitoring activities at National Fisheries Research and Development Institute (NFRDI) in Korea have been extended to all the coastal waters after the worst of fish killing by C. polykrikoides blooms in 1995. NFRDI is looking forward to finding out the feasibility of red tide detection around Korean waters using satellite remote sensing of NOAA/AVHRR, Orbview-2/SeaWiFS, IRS-P4/OCM and Terra/MODIS on real time base. In this study, we used several alternative methods including climatological analysis, spectral and optical methods which may offer a potential detection of the major species of red tide in Korean waters. The relationship between the distribution of SST and C. polykrikoides bloom areas was studied. In climatological analysis, NOAA, SeaWiFS, OCM satellite data in 20th and 26th August 2001 were chosen using the known C. polykrikoides red tide bloom area mapped by helicopter reconnaissance and ground observation. The 26th August, 2001 SeaWiFS chlorophyll a anomaly imageries against the imageries of non-occurring red tide for August 20, 2001 showed the areas C. polykrikoides occurred. The anomalies of chlorophyll a concentration from satellite data between before and after red tide outbreaks showed the similar distribution of C. polykrikoides red tide in 26th August, 2001. The distribution of the difference in SST between daytime and nighttime also showed the possibility of red tide detection. We used corrected vegetation index (CVI) to detect floating vegetation and submerged vegetation containing algal blooms. The simple result of optical absorption from C. polykrikoides showed that if we use the optical characteristics of each red tide we will be able to get the feasibility of the red tide detection.

  • PDF

Damaged cable detection with statistical analysis, clustering, and deep learning models

  • Son, Hyesook;Yoon, Chanyoung;Kim, Yejin;Jang, Yun;Tran, Linh Viet;Kim, Seung-Eock;Kim, Dong Joo;Park, Jongwoong
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.17-28
    • /
    • 2022
  • The cable component of cable-stayed bridges is gradually impacted by weather conditions, vehicle loads, and material corrosion. The stayed cable is a critical load-carrying part that closely affects the operational stability of a cable-stayed bridge. Damaged cables might lead to the bridge collapse due to their tension capacity reduction. Thus, it is necessary to develop structural health monitoring (SHM) techniques that accurately identify damaged cables. In this work, a combinational identification method of three efficient techniques, including statistical analysis, clustering, and neural network models, is proposed to detect the damaged cable in a cable-stayed bridge. The measured dataset from the bridge was initially preprocessed to remove the outlier channels. Then, the theory and application of each technique for damage detection were introduced. In general, the statistical approach extracts the parameters representing the damage within time series, and the clustering approach identifies the outliers from the data signals as damaged members, while the deep learning approach uses the nonlinear data dependencies in SHM for the training model. The performance of these approaches in classifying the damaged cable was assessed, and the combinational identification method was obtained using the voting ensemble. Finally, the combination method was compared with an existing outlier detection algorithm, support vector machines (SVM). The results demonstrate that the proposed method is robust and provides higher accuracy for the damaged cable detection in the cable-stayed bridge.

Experimental Analysis of Physical Signal Jamming Attacks on Automotive LiDAR Sensors and Proposal of Countermeasures (차량용 LiDAR 센서 물리적 신호교란 공격 중심의 실험적 분석과 대응방안 제안)

  • Ji-ung Hwang;Yo-seob Yoon;In-su Oh;Kang-bin Yim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.2
    • /
    • pp.217-228
    • /
    • 2024
  • LiDAR(Light Detection And Ranging) sensors, which play a pivotal role among cameras, RADAR(RAdio Detection And Ranging), and ultrasonic sensors for the safe operation of autonomous vehicles, can recognize and detect objects in 360 degrees. However, since LiDAR sensors use lasers to measure distance, they are vulnerable to attackers and face various security threats. In this paper, we examine several security threats against LiDAR sensors: relay, spoofing, and replay attacks, analyze the possibility and impact of physical jamming attacks, and analyze the risk these attacks pose to the reliability of autonomous driving systems. Through experiments, we show that jamming attacks can cause errors in the ranging ability of LiDAR sensors. With vehicle-to-vehicle (V2V) communication, multi-sensor fusion under development and LiDAR anomaly data detection, this work aims to provide a basic direction for countermeasures against these threats enhancing the security of autonomous vehicles, and verify the practical applicability and effectiveness of the proposed countermeasures in future research.

Development of Trans-Admittance Scanner (TAS) for Breast Cancer Detection (유방암 검출을 위한 생계 어드미턴스 스캐너의 개발)

  • 이정환;오동인;이재상;우응제;서진근;권오인
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.335-342
    • /
    • 2004
  • This paper describes a trans-admittance scanner for breast cancer detection. A FPGA-based sinusoidal waveform generator produces a constant voltage. The voltage is applied between a hand-held electrode and a scan probe placed on the breast. The scan probe contains an 8x8 array of electrodes that are kept at the ground potential. Multi-channel precision digital ammeters using the phase-sensitive demodulation technique were developed to measure the exit current from each electrode in the array. Different regions of the breast are scanned by moving the probe on the breast. We could get trans-admittance images of resistor and saline phantoms with an anomaly inside. The images provided the information on the depth and location of the anomaly. In future studies, we need to improve the accuracy through a better calibration method. We plan to test the scanner's ability to detect a cancer lesion inside the human breast.