• 제목/요약/키워드: Anomaly detection

검색결과 670건 처리시간 0.024초

이동 평균과 3-시그마를 이용한 하둡 로그 데이터의 이상 탐지 (Anomaly Detection of Hadoop Log Data Using Moving Average and 3-Sigma)

  • 손시운;길명선;문양세;원희선
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권6호
    • /
    • pp.283-288
    • /
    • 2016
  • 최근 빅데이터 처리를 위한 연구들이 활발히 진행 중이며, 관련된 다양한 제품들이 개발되고 있다. 이에 따라, 기존 환경에서는 처리가 어려웠던 대용량 로그 데이터의 저장 및 분석이 가능해졌다. 본 논문은 다수의 서버에서 빠르게 생성되는 대량의 로그 데이터를 Apache Hive에서 분석할 수 있는 데이터 저장 구조를 제안한다. 그리고 저장된 로그 데이터로부터 특정 서버의 이상 유무를 판단하기 위해, 이동 평균 및 3-시그마 기반의 이상 탐지 기술을 설계 및 구현한다. 또한, 실험을 통해 로그 데이터의 급격한 증가폭을 나타내는 구간을 이상으로 판단하여, 제안한 이상 탐지 기술의 유효성을 보인다. 이 같은 결과를 볼 때, 본 연구는 하둡 기반으로 로그 데이터를 분석하여 이상치를 바르게 탐지할 수 있는 우수한 결과라 사료된다.

도로 CCTV 데이터를 활용한 딥러닝 기반 차량 이상 감지 (Deep Learning-based Vehicle Anomaly Detection using Road CCTV Data)

  • 신동훈;백지원;박찬홍;정경용
    • 한국융합학회논문지
    • /
    • 제12권2호
    • /
    • pp.1-6
    • /
    • 2021
  • 현대사회에서는 차량을 소유하는 사람들이 증가하면서 교통문제가 발생하고 있다. 특히 고속도로 교통사고 문제는 발생률이 낮지만 치사율은 높다. 따라서 차량의 이상을 탐지하는 기술이 연구되고 있다. 이 중에는 딥러닝을 이용한 차량 이상탐지 기술이 있다. 이는 사고 및 엔진고장으로 인한 정차차량 등의 차량 이상을 탐지한다. 그러나 도로에서 이상이 발생할 경우 운전자의 위치를 파악할 수 있어야 빠른 대처가 가능하다. 따라서 본 연구에서는 도로 CCTV 데이터를 활용한 딥러닝 기반 차량 이상 감지 방법을 제안한다. 제안하는 방법은 먼저 도로 CCTV 데이터를 전처리한다. 전처리는 배경 추출 알고리즘인 MOG2를 이용하여 배경과 전경을 분리한다. 전경은 변위가 존재하는 차량을 의미하며 도로 위에서 이상이 존재하는 차는 변위가 없어 배경으로 판단된다. 배경이 추출된 이미지는 이상을 탐지하기 위해 YOLOv4를 이용하여 객체를 탐지한다. 해당 차량은 이상이 있음으로 판단한다.

정상 샘플 이미지의 기하학적 변환을 사용한 이상 징후 검출 (Anomaly Detection using Geometric Transformation of Normal Sample Images)

  • 권용완;강동중
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권4호
    • /
    • pp.157-163
    • /
    • 2022
  • 최근 산업 분야 자동화의 발전에 따라 이상 징후 검출에 대한 연구가 활발하게 진행 중이다. 공장 자동화에 사용되는 이상 징후 검출의 응용분야로 카메라를 사용한 결함 검사가 있다. 비전 카메라 검사는 공장 자동화에서 높은 성능과 효율성을 보이지만, 조명과 환경조건의 불안정성을 극복하기가 어렵다. 딥러닝을 이용한 카메라 검사가 훨씬 더 높은 성능을 보이면서 비전 카메라 검사의 문제를 해결할 수 있지만 학습을 위해 엄청난 양의 정상 데이터 및 비정상 데이터를 요구하기 때문에 실제 산업 분야에 적용하기가 어렵다. 따라서 본 연구는 정상 데이터만을 사용한 72개의 기하학적 변환 딥러닝 방법으로 비정상 데이터 수집 문제를 극복하고, 성능 개선을 위한 특이치 노출 방법을 추가한 네트워크를 제안한다. 이를 자동차 부품 데이터 및 이상치 검출용 데이터베이스인 MVTec 데이터 셋에 적용하고 검증함에 의해 실제 산업 현장에서 적용할 수 있음을 보인다.

Data abnormal detection using bidirectional long-short neural network combined with artificial experience

  • Yang, Kang;Jiang, Huachen;Ding, Youliang;Wang, Manya;Wan, Chunfeng
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.117-127
    • /
    • 2022
  • Data anomalies seriously threaten the reliability of the bridge structural health monitoring system and may trigger system misjudgment. To overcome the above problem, an efficient and accurate data anomaly detection method is desiderated. Traditional anomaly detection methods extract various abnormal features as the key indicators to identify data anomalies. Then set thresholds artificially for various features to identify specific anomalies, which is the artificial experience method. However, limited by the poor generalization ability among sensors, this method often leads to high labor costs. Another approach to anomaly detection is a data-driven approach based on machine learning methods. Among these, the bidirectional long-short memory neural network (BiLSTM), as an effective classification method, excels at finding complex relationships in multivariate time series data. However, training unprocessed original signals often leads to low computation efficiency and poor convergence, for lacking appropriate feature selection. Therefore, this article combines the advantages of the two methods by proposing a deep learning method with manual experience statistical features fed into it. Experimental comparative studies illustrate that the BiLSTM model with appropriate feature input has an accuracy rate of over 87-94%. Meanwhile, this paper provides basic principles of data cleaning and discusses the typical features of various anomalies. Furthermore, the optimization strategies of the feature space selection based on artificial experience are also highlighted.

이상 탐지를 위한 시스템콜 시퀀스 임베딩 접근 방식 비교 (Comparison of System Call Sequence Embedding Approaches for Anomaly Detection)

  • 이근섭;박경선;김강석
    • 융합정보논문지
    • /
    • 제12권2호
    • /
    • pp.47-53
    • /
    • 2022
  • 최근 지능화된 보안 패러다임의 변화에 따라, 다양한 정보보안 시스템에서 발생하는 각종 정보를 인공지능 기반 이상탐지에 적용하기 위한 연구가 증가하고 있다. 따라서 본 연구는 로그와 같은 시계열 데이터를 수치형 특성인 벡터로 변환하기 위하여 딥러닝 기반 Word2Vec 모델의 CBOW와 Skip-gram 추론 방식과 동시발생 빈도 기반 통계 방식을 사용하여 공개된 ADFA 시스템콜 데이터에 대하여, 벡터의 차원, 시퀀스 길이 및 윈도우 사이즈를 고려한 다양한 임베딩 벡터로의 변환에 대한 실험을 진행하였다. 또한 임베딩 모델로 생성된 벡터를 입력으로 하는 GRU 기반 이상 탐지 모델을 통해 탐지 성능뿐만 아니라 사용된 임베딩 방법들의 성능을 비교 평가하였다. 통계 모델에 비해 추론 기반 모델인 Skip-gram이 특정 윈도우 사이즈나 시퀀스 길이에 치우침 없이 좀 더 안정되게(stable) 성능을 유지하여, 시퀀스 데이터의 각 이벤트들을 임베딩 벡터로 만드는데 더 효과적임을 확인하였다.

Design and Analysis of Lightweight Trust Mechanism for Accessing Data in MANETs

  • Kumar, Adarsh;Gopal, Krishna;Aggarwal, Alok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권3호
    • /
    • pp.1119-1143
    • /
    • 2014
  • Lightweight trust mechanism with lightweight cryptographic primitives has emerged as an important mechanism in resource constraint wireless sensor based mobile devices. In this work, outlier detection in lightweight Mobile Ad-hoc NETworks (MANETs) is extended to create the space of reliable trust cycle with anomaly detection mechanism and minimum energy losses [1]. Further, system is tested against outliers through detection ratios and anomaly scores before incorporating virtual programmable nodes to increase the efficiency. Security in proposed system is verified through ProVerif automated toolkit and mathematical analysis shows that it is strong against bad mouthing and on-off attacks. Performance of proposed technique is analyzed over different MANET routing protocols with variations in number of nodes and it is observed that system provide good amount of throughput with maximum of 20% increase in delay on increase of maximum of 100 nodes. System is reflecting good amount of scalability, optimization of resources and security. Lightweight modeling and policy analysis with lightweight cryptographic primitives shows that the intruders can be detection in few milliseconds without any conflicts in access rights.

THRE-KBANN을 이용한 이상현상탐지모델 (Anomaly Detection Model Using THRE-KBANN)

  • 심동희
    • 전자공학회논문지CI
    • /
    • 제38권5호
    • /
    • pp.37-43
    • /
    • 2001
  • 인터넷이 널리 이용되면서 네트워크나 호스트에 대한 불법적인 침입은 많은 위험요소가 되고 있다. 이러한 침입을 탐지하기 위하여 통계적기법, 데이터마이닝기법, 유전자 알고리즘/프로그래밍 기법 등을 이용한 이상현상 탐지모델들이 많이 제안되어 왔으나 새로운 유형의 침입에 대해서는 탐지능력이 떨어지는 단점이 있다. 본 논문에서는 THRE KBANN을 이용한 이상현상탐지모델을 제안하였는데, 이는 연속학습을 할 수 있도록 지식기반신경망을 개선한 것이다. 이 모델을 실험적 자료에 적용한 결과를 데이터마이닝기법을 적용한 경우와 비교하여 성능평가를 하였다. 그리고 새로운 침입유형을 탐지하기 위한 연속학습에 대한 성능도 평가하였다.

  • PDF

태양광 발전 이상감지를 위한 아웃라이어 추정 방법에 대한 연구 (A study on the outlier data estimation method for anomaly detection of photovoltaic system)

  • 서종관;이태일;이휘성;박점배
    • 전기전자학회논문지
    • /
    • 제24권2호
    • /
    • pp.403-408
    • /
    • 2020
  • 태양광 발전은 특성상 간헐성과 불확실성이 항상 존재하기 때문에 정확한 예측은 어려우며, 실시간 발전량 진단을 위한 이상감지 기술이 중요하다. 본 논문에서는 다양한 파라미터의 상관관계를 도출하고 최근접 이웃 알고리즘을 적용하여 정상데이터와 비정상데이터를 분류한다. 두 분류의 결과는 발전 시스템의 결함에 의한 아웃라이어와 구름 등에 의해 단기간 동안 발생하는 부분 음영 및 전체 음영의 일시적인 전력손실을 보여준다. 100kW 발전소 데이터를 대상으로 머신러닝 분석을 수행하여 테스트 결과를 산출하였으며 실제 이상치와 이상치 후보지를 검증하였다.

Rule-Based Anomaly Detection Technique Using Roaming Honeypots for Wireless Sensor Networks

  • Gowri, Muthukrishnan;Paramasivan, Balasubramanian
    • ETRI Journal
    • /
    • 제38권6호
    • /
    • pp.1145-1152
    • /
    • 2016
  • Because the nodes in a wireless sensor network (WSN) are mobile and the network is highly dynamic, monitoring every node at all times is impractical. As a result, an intruder can attack the network easily, thus impairing the system. Hence, detecting anomalies in the network is very essential for handling efficient and safe communication. To overcome these issues, in this paper, we propose a rule-based anomaly detection technique using roaming honeypots. Initially, the honeypots are deployed in such a way that all nodes in the network are covered by at least one honeypot. Honeypots check every new connection by letting the centralized administrator collect the information regarding the new connection by slowing down the communication with the new node. Certain predefined rules are applied on the new node to make a decision regarding the anomality of the node. When the timer value of each honeypot expires, other sensor nodes are appointed as honeypots. Owing to this honeypot rotation, the intruder will not be able to track a honeypot to impair the network. Simulation results show that this technique can efficiently handle the anomaly detection in a WSN.

A hybrid deep neural network compression approach enabling edge intelligence for data anomaly detection in smart structural health monitoring systems

  • Tarutal Ghosh Mondal;Jau-Yu Chou;Yuguang Fu;Jianxiao Mao
    • Smart Structures and Systems
    • /
    • 제32권3호
    • /
    • pp.179-193
    • /
    • 2023
  • This study explores an alternative to the existing centralized process for data anomaly detection in modern Internet of Things (IoT)-based structural health monitoring (SHM) systems. An edge intelligence framework is proposed for the early detection and classification of various data anomalies facilitating quality enhancement of acquired data before transmitting to a central system. State-of-the-art deep neural network pruning techniques are investigated and compared aiming to significantly reduce the network size so that it can run efficiently on resource-constrained edge devices such as wireless smart sensors. Further, depthwise separable convolution (DSC) is invoked, the integration of which with advanced structural pruning methods exhibited superior compression capability. Last but not least, quantization-aware training (QAT) is adopted for faster processing and lower memory and power consumption. The proposed edge intelligence framework will eventually lead to reduced network overload and latency. This will enable intelligent self-adaptation strategies to be employed to timely deal with a faulty sensor, minimizing the wasteful use of power, memory, and other resources in wireless smart sensors, increasing efficiency, and reducing maintenance costs for modern smart SHM systems. This study presents a theoretical foundation for the proposed framework, the validation of which through actual field trials is a scope for future work.