• Title/Summary/Keyword: Anomaly data detection

Search Result 380, Processing Time 0.021 seconds

A Novel Network Anomaly Detection Method based on Data Balancing and Recursive Feature Addition

  • Liu, Xinqian;Ren, Jiadong;He, Haitao;Wang, Qian;Sun, Shengting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.3093-3115
    • /
    • 2020
  • Network anomaly detection system plays an essential role in detecting network anomaly and ensuring network security. Anomaly detection system based machine learning has become an increasingly popular solution. However, due to the unbalance and high-dimension characteristics of network traffic, the existing methods unable to achieve the excellent performance of high accuracy and low false alarm rate. To address this problem, a new network anomaly detection method based on data balancing and recursive feature addition is proposed. Firstly, data balancing algorithm based on improved KNN outlier detection is designed to select part respective data on each category. Combination optimization about parameters of improved KNN outlier detection is implemented by genetic algorithm. Next, recursive feature addition algorithm based on correlation analysis is proposed to select effective features, in which a cross contingency test is utilized to analyze correlation and obtain a features subset with a strong correlation. Then, random forests model is as the classification model to detection anomaly. Finally, the proposed algorithm is evaluated on benchmark datasets KDD Cup 1999 and UNSW_NB15. The result illustrates the proposed strategies enhance accuracy and recall, and decrease the false alarm rate. Compared with other algorithms, this algorithm still achieves significant effects, especially recall in the small category.

Anomaly-based Alzheimer's disease detection using entropy-based probability Positron Emission Tomography images

  • Husnu Baris Baydargil;Jangsik Park;Ibrahim Furkan Ince
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.513-525
    • /
    • 2024
  • Deep neural networks trained on labeled medical data face major challenges owing to the economic costs of data acquisition through expensive medical imaging devices, expert labor for data annotation, and large datasets to achieve optimal model performance. The heterogeneity of diseases, such as Alzheimer's disease, further complicates deep learning because the test cases may substantially differ from the training data, possibly increasing the rate of false positives. We propose a reconstruction-based self-supervised anomaly detection model to overcome these challenges. It has a dual-subnetwork encoder that enhances feature encoding augmented by skip connections to the decoder for improving the gradient flow. The novel encoder captures local and global features to improve image reconstruction. In addition, we introduce an entropy-based image conversion method. Extensive evaluations show that the proposed model outperforms benchmark models in anomaly detection and classification using an encoder. The supervised and unsupervised models show improved performances when trained with data preprocessed using the proposed image conversion method.

A Moving Window Principal Components Analysis Based Anomaly Detection and Mitigation Approach in SDN Network

  • Wang, Mingxin;Zhou, Huachun;Chen, Jia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3946-3965
    • /
    • 2018
  • Network anomaly detection in Software Defined Networking, especially the detection of DDoS attack, has been given great attention in recent years. It is convenient to build the Traffic Matrix from a global view in SDN. However, the monitoring and management of high-volume feature-rich traffic in large networks brings significant challenges. In this paper, we propose a moving window Principal Components Analysis based anomaly detection and mitigation approach to map data onto a low-dimensional subspace and keep monitoring the network state in real-time. Once the anomaly is detected, the controller will install the defense flow table rules onto the corresponding data plane switches to mitigate the attack. Furthermore, we evaluate our approach with experiments. The Receiver Operating Characteristic curves show that our approach performs well in both detection probability and false alarm probability compared with the entropy-based approach. In addition, the mitigation effect is impressive that our approach can prevent most of the attacking traffic. At last, we evaluate the overhead of the system, including the detection delay and utilization of CPU, which is not excessive. Our anomaly detection approach is lightweight and effective.

Using artificial intelligence to detect human errors in nuclear power plants: A case in operation and maintenance

  • Ezgi Gursel ;Bhavya Reddy ;Anahita Khojandi;Mahboubeh Madadi;Jamie Baalis Coble;Vivek Agarwal ;Vaibhav Yadav;Ronald L. Boring
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.603-622
    • /
    • 2023
  • Human error (HE) is an important concern in safety-critical systems such as nuclear power plants (NPPs). HE has played a role in many accidents and outage incidents in NPPs. Despite the increased automation in NPPs, HE remains unavoidable. Hence, the need for HE detection is as important as HE prevention efforts. In NPPs, HE is rather rare. Hence, anomaly detection, a widely used machine learning technique for detecting rare anomalous instances, can be repurposed to detect potential HE. In this study, we develop an unsupervised anomaly detection technique based on generative adversarial networks (GANs) to detect anomalies in manually collected surveillance data in NPPs. More specifically, our GAN is trained to detect mismatches between automatically recorded sensor data and manually collected surveillance data, and hence, identify anomalous instances that can be attributed to HE. We test our GAN on both a real-world dataset and an external dataset obtained from a testbed, and we benchmark our results against state-of-the-art unsupervised anomaly detection algorithms, including one-class support vector machine and isolation forest. Our results show that the proposed GAN provides improved anomaly detection performance. Our study is promising for the future development of artificial intelligence based HE detection systems.

Anomaly Detection Model Based on Semi-Supervised Learning Using LIME: Focusing on Semiconductor Process (LIME을 활용한 준지도 학습 기반 이상 탐지 모델: 반도체 공정을 중심으로)

  • Kang-Min An;Ju-Eun Shin;Dong Hyun Baek
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.86-98
    • /
    • 2022
  • Recently, many studies have been conducted to improve quality by applying machine learning models to semiconductor manufacturing process data. However, in the semiconductor manufacturing process, the ratio of good products is much higher than that of defective products, so the problem of data imbalance is serious in terms of machine learning. In addition, since the number of features of data used in machine learning is very large, it is very important to perform machine learning by extracting only important features from among them to increase accuracy and utilization. This study proposes an anomaly detection methodology that can learn excellently despite data imbalance and high-dimensional characteristics of semiconductor process data. The anomaly detection methodology applies the LIME algorithm after applying the SMOTE method and the RFECV method. The proposed methodology analyzes the classification result of the anomaly classification model, detects the cause of the anomaly, and derives a semiconductor process requiring action. The proposed methodology confirmed applicability and feasibility through application of cases.

Image Anomaly Detection Using MLP-Mixer (MLP-Mixer를 이용한 이미지 이상탐지)

  • Hwang, Ju-hyo;Jin, Kyo-hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.104-107
    • /
    • 2022
  • autoencoder deep learning model has excellent ability to restore abnormal data to normal data, so it is not appropriate for anomaly detection. In addition, the Inpainting method, which is a method of restoring hidden data after masking (masking) a part of the data, has a problem in that the restoring ability is poor for noisy images. In this paper, we use a method of modifying and improving the MLP-Mixer model to mask the image at a certain ratio and to reconstruct the image by delivering compressed information of the masked image to the model. After constructing a model learned with normal data from the MVTec AD dataset, a reconstruction error was obtained by inputting normal and abnormal images, respectively, and anomaly detection was performed through this. As a result of the performance evaluation, it was found that the proposed method has superior anomaly detection performance compared to the existing method.

  • PDF

An Anomaly Detection Framework Based on ICA and Bayesian Classification for IaaS Platforms

  • Wang, GuiPing;Yang, JianXi;Li, Ren
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3865-3883
    • /
    • 2016
  • Infrastructure as a Service (IaaS) encapsulates computer hardware into a large amount of virtual and manageable instances mainly in the form of virtual machine (VM), and provides rental service for users. Currently, VM anomaly incidents occasionally occur, which leads to performance issues and even downtime. This paper aims at detecting anomalous VMs based on performance metrics data of VMs. Due to the dynamic nature and increasing scale of IaaS, detecting anomalous VMs from voluminous correlated and non-Gaussian monitored performance data is a challenging task. This paper designs an anomaly detection framework to solve this challenge. First, it collects 53 performance metrics to reflect the running state of each VM. The collected performance metrics are testified not to follow the Gaussian distribution. Then, it employs independent components analysis (ICA) instead of principal component analysis (PCA) to extract independent components from collected non-Gaussian performance metric data. For anomaly detection, it employs multi-class Bayesian classification to determine the current state of each VM. To evaluate the performance of the designed detection framework, four types of anomalies are separately or jointly injected into randomly selected VMs in a campus-wide testbed. The experimental results show that ICA-based detection mechanism outperforms PCA-based and LDA-based detection mechanisms in terms of sensitivity and specificity.

Abnormal Data Augmentation Method Using Perturbation Based on Hypersphere for Semi-Supervised Anomaly Detection (준 지도 이상 탐지 기법의 성능 향상을 위한 섭동을 활용한 초구 기반 비정상 데이터 증강 기법)

  • Jung, Byeonggil;Kwon, Junhyung;Min, Dongjun;Lee, Sangkyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.4
    • /
    • pp.647-660
    • /
    • 2022
  • Recent works demonstrate that the semi-supervised anomaly detection method functions quite well in the environment with normal data and some anomalous data. However, abnormal data shortages can occur in an environment where it is difficult to reserve anomalous data, such as an unknown attack in the cyber security fields. In this paper, we propose ADA-PH(Abnormal Data Augmentation Method using Perturbation based on Hypersphere), a novel anomalous data augmentation method that is applicable in an environment where abnormal data is insufficient to secure the performance of the semi-supervised anomaly detection method. ADA-PH generates abnormal data by perturbing samples located relatively far from the center of the hypersphere. With the network intrusion detection datasets where abnormal data is rare, ADA-PH shows 23.63% higher AUC performance than anomaly detection without data augmentation and even performs better than the other augmentation methods. Also, we further conduct quantitative and qualitative analysis on whether generated abnormal data is anomalous.

Convolutional neural network-based data anomaly detection considering class imbalance with limited data

  • Du, Yao;Li, Ling-fang;Hou, Rong-rong;Wang, Xiao-you;Tian, Wei;Xia, Yong
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.63-75
    • /
    • 2022
  • The raw data collected by structural health monitoring (SHM) systems may suffer multiple patterns of anomalies, which pose a significant barrier for an automatic and accurate structural condition assessment. Therefore, the detection and classification of these anomalies is an essential pre-processing step for SHM systems. However, the heterogeneous data patterns, scarce anomalous samples and severe class imbalance make data anomaly detection difficult. In this regard, this study proposes a convolutional neural network-based data anomaly detection method. The time and frequency domains data are transferred as images and used as the input of the neural network for training. ResNet18 is adopted as the feature extractor to avoid training with massive labelled data. In addition, the focal loss function is adopted to soften the class imbalance-induced classification bias. The effectiveness of the proposed method is validated using acceleration data collected in a long-span cable-stayed bridge. The proposed approach detects and classifies data anomalies with high accuracy.

The use of Local API(Anomaly Process Instances) Detection for Analyzing Container Terminal Event (로컬 API(Anomaly Process Instances) 탐지법을 이용한 컨테이너 터미널 이벤트 분석)

  • Jeon, Daeuk;Bae, Hyerim
    • The Journal of Society for e-Business Studies
    • /
    • v.20 no.4
    • /
    • pp.41-59
    • /
    • 2015
  • Information systems has been developed and used in various business area, therefore there are abundance of history data (log data) stored, and subsequently, it is required to analyze those log data. Previous studies have been focusing on the discovering of relationship between events and no identification of anomaly instances. Previously, anomaly instances are treated as noise and simply ignored. However, this kind of anomaly instances can occur repeatedly. Hence, a new methodology to detect the anomaly instances is needed. In this paper, we propose a methodology of LAPID (Local Anomaly Process Instance Detection) for discriminating an anomalous process instance from the log data. We specified a distance metric from the activity relation matrix of each instance, and use it to detect API (Anomaly Process Instance). For verifying the suggested methodology, we discovered characteristics of exceptional situations from log data. To demonstrate our proposed methodology, we performed our experiment on real data from a domestic port terminal.