• 제목/요약/키워드: Anomaly data detection

검색결과 402건 처리시간 0.025초

네트워크 이상행위 탐지를 위한 암호트래픽 분석기술 동향 (Trends of Encrypted Network Traffic Analysis Technologies for Network Anomaly Detection)

  • 최양서;유재학;구기종;문대성
    • 전자통신동향분석
    • /
    • 제38권5호
    • /
    • pp.71-80
    • /
    • 2023
  • With the rapid advancement of the Internet, the use of encrypted traffic has surged in order to protect data during transmission. Simultaneously, network attacks have also begun to leverage encrypted traffic, leading to active research in the field of encrypted traffic analysis to overcome the limitations of traditional detection methods. In this paper, we provide an overview of the encrypted traffic analysis field, covering the analysis process, domains, models, evaluation methods, and research trends. Specifically, it focuses on the research trends in the field of anomaly detection in encrypted network traffic analysis. Furthermore, considerations for model development in encrypted traffic analysis are discussed, including traffic dataset composition, selection of traffic representation methods, creation of analysis models, and mitigation of AI model attacks. In the future, the volume of encrypted network traffic will continue to increase, particularly with a higher proportion of attack traffic utilizing encryption. Research on attack detection in such an environment must be consistently conducted to address these challenges.

The application of machine learning for the prognostics and health management of control element drive system

  • Oluwasegun, Adebena;Jung, Jae-Cheon
    • Nuclear Engineering and Technology
    • /
    • 제52권10호
    • /
    • pp.2262-2273
    • /
    • 2020
  • Digital twin technology can provide significant value for the prognostics and health management (PHM) of critical plant components by improving insight into system design and operating conditions. Digital twinning of systems can be utilized for anomaly detection, diagnosis and the estimation of the system's remaining useful life in order to optimize operations and maintenance processes in a nuclear plant. In this regard, a conceptual framework for the application of digital twin technology for the prognosis of Control Element Drive Mechanism (CEDM), and a data-driven approach to anomaly detection using coil current profile are presented in this study. Health management of plant components can capitalize on the data and signals that are already recorded as part of the monitored parameters of the plant's instrumentation and control systems. This work is focused on the development of machine learning algorithm and workflow for the analysis of the CEDM using the recorded coil current data. The workflow involves features extraction from the coil-current profile and consequently performing both clustering and classification algorithms. This approach provides an opportunity for health monitoring in support of condition-based predictive maintenance optimization and in the development of the CEDM digital twin model for improved plant safety and availability.

베이지안 네트워크 기반의 변형된 침입 패턴 분류 기법 (Modificated Intrusion Pattern Classification Technique based on Bayesian Network)

  • 차병래;박경우;서재현
    • 인터넷정보학회논문지
    • /
    • 제4권2호
    • /
    • pp.69-80
    • /
    • 2003
  • 프로그램 행위 침입 탐지 기법은 데몬 프로그램이나 루트 권한으로 실행되는 프로그램이 발생시키는 시스템 호출들을 분석하고 프로파일을 구축하여 변형된 공격을 효과적으로 탐지한다. 본 논문에서는 베이지안 네트워크와 다중 서열 정렬을 이용하여 여러 프로세스의 시스템 호출간의 관계를 표현하고, 프로그램 행위를 모델링하여 변형된 이상 침입 행위를 분류함으로써 이상행위를 탐지한다. 제안한 기법을 UNM 데이터를 이용한 시뮬레이션을 수행하였다.

  • PDF

IoT 네트워크에서 다중 스케일 PCA 를 사용한 트렌드 적응형 이상 탐지 (Trend-adaptive Anomaly Detection with Multi-Scale PCA in IoT Networks)

  • Dang, Thien-Binh;Tran, Manh-Hung;Le, Duc-Tai;Choo, Hyunseung
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 춘계학술발표대회
    • /
    • pp.562-565
    • /
    • 2018
  • A wide range of IoT applications use information collected from networks of sensors for monitoring and controlling purposes. However, the frequent appearance of fault data makes it difficult to extract correct information, thereby sending incorrect commands to actuators that can threaten human privacy and safety. For this reason, it is necessary to have a mechanism to detect fault data collected from sensors. In this paper, we present a trend-adaptive multi-scale principal component analysis (Trend-adaptive MS-PCA) model for data fault detection. The proposed model inherits advantages of Discrete Wavelet Transform (DWT) in capturing time-frequency information and advantages of PCA in extracting correlation among sensors' data. Experimental results on a real dataset show the high effectiveness of the proposed model in data fault detection.

데이터 마이닝을 이용한 공격 탐지 메커니즘의 실험적 비교 연구 (An Empirical Comparison Study on Attack Detection Mechanisms Using Data Mining)

  • 김미희;오하영;채기준
    • 한국통신학회논문지
    • /
    • 제31권2C호
    • /
    • pp.208-218
    • /
    • 2006
  • 본 논문에서는 최신의 공격 유형을 잘 분류해 내고, 기존 공격의 변형이나 새로운 공격에도 탐지 가능하도록 데이터 마이닝 기법을 이용한 공격 탐지 모델 생성 방법들을 소개하고, 다양한 실험을 통해 탐지율 및 탐지 시간 측면에서 이 모델들의 성능을 비교한다. 이러한 탐지 모델을 생성하는데 중요한 요소로 데이터, 속성, 탐지 알고리즘을 꼽을 수 있는데, 실제 네트워크에서 수집된 NetFlow 데이터와 대량의 KDD Cup 1999 데이터를 사용하였다. 또한 탐지 알고리즘으로서 단일 지도/비지도학습 데이터 마이닝 기법 및 결합된 방법을 이용하여 탐지 모델을 생성, 비교 실험하였다. 시험 결과, 결합된 지도학습 알고리즘을 사용한 경우 모델링 시간은 길었지만 가장 탐지율이 높았고, 모든 경우 탐지 시간이 1초 내외로 실시간 탐지 가능성을 입증할 수 있었다. 또한 새로운 공격에 대한 이상탐지 결과로도 92$\%$ 이상의 탐지율을 보임으로 탐지 가능성을 입증할 수 있었고, SOM 기법을 사용하는 경우에는 새로운 공격이 기존 어느 공격에 유사한 특성을 갖는지에 대한 부과적인 정보도 제공하였다.

Emerging Machine Learning in Wearable Healthcare Sensors

  • Gandha Satria Adi;Inkyu Park
    • 센서학회지
    • /
    • 제32권6호
    • /
    • pp.378-385
    • /
    • 2023
  • Human biosignals provide essential information for diagnosing diseases such as dementia and Parkinson's disease. Owing to the shortcomings of current clinical assessments, noninvasive solutions are required. Machine learning (ML) on wearable sensor data is a promising method for the real-time monitoring and early detection of abnormalities. ML facilitates disease identification, severity measurement, and remote rehabilitation by providing continuous feedback. In the context of wearable sensor technology, ML involves training on observed data for tasks such as classification and regression with applications in clinical metrics. Although supervised ML presents challenges in clinical settings, unsupervised learning, which focuses on tasks such as cluster identification and anomaly detection, has emerged as a useful alternative. This review examines and discusses a variety of ML algorithms such as Support Vector Machines (SVM), Random Forests (RF), Decision Trees (DT), Neural Networks (NN), and Deep Learning for the analysis of complex clinical data.

균형상살 검출 알고리즘에서 검출과 관련된 설계변수의 민감도 해석 몇 최적화 (Sensitivity Analysis and Optimization of Design Variables Related to an Algorithm for Loss of Balance Detection)

  • 고병규;김광훈;손권
    • 대한의용생체공학회:의공학회지
    • /
    • 제32권1호
    • /
    • pp.7-14
    • /
    • 2011
  • This study suggested an optimized algorithm for detecting the loss of balance(LOB) in the seated position. And the sensitivity analysis was performed in order to identify the role of each design variable in the algorithm. The LOB algorithm consisted of data processing of measured signals, an internal model of the central nervous system and a control error anomaly(CEA) detector. This study optimized design variables of a CEA detector to obtain improved values of the success rate(SR) of detecting the LOB and the margin time(MT) provided for preventing the falling. Nine healthy adult volunteers were involved in the experiments. All the subjects were asked to balance their body in a predescribed seated posture with the rear legs of a four-legged wooden chair. The ground reaction force from the right leg was measured from the force plate while the accelerations of the chair and the head were measured from a couple of piezoelectric accelerometers. The measured data were processed to predict the LOB using a detection algorithm. Variables S2, h2 and hd are related to the detector: S2 represents a data selecting window, h2 a time shift and hd an operating period of the LOB detection algorithm. S2 was varied from 0.1 to 10 sec with an increment of 0.1 sec, and both h2 and hd were varied from 0.01 to 1.0 sec with an increment of 0.01 sec. It was found that the SR and MT were increased by up to 9.7% and 0.497 sec comparing with the previously published case when the values of S2, h2 and hd were set to 4.5, 0.3 and 0.2 sec, respectively. Also the results of sensitivity analysis showed that S2 and h2 had considerable influence on the SR while these variables were not so sensitive to the MT.

베이지안 확률 및 폐쇄 순차패턴 마이닝 방식을 이용한 설명가능한 로그 이상탐지 시스템 (An Interpretable Log Anomaly System Using Bayesian Probability and Closed Sequence Pattern Mining)

  • 윤지영;신건윤;김동욱;김상수;한명묵
    • 인터넷정보학회논문지
    • /
    • 제22권2호
    • /
    • pp.77-87
    • /
    • 2021
  • 인터넷과 개인용 컴퓨터가 발달하면서 다양하고 복잡한 공격들이 등장하기 시작했다. 공격들이 복잡해짐에 따라 기존에 사용하던 시그니처 기반의 탐지 방식으로 탐지가 어려워졌으며 이를 해결하기 위해 행위기반의 탐지를 위한 로그 이상탐지에 대한 연구가 주목 받기 시작했다. 최근 로그 이상탐지에 대한 연구는 딥러닝을 활용해 순서를 학습하는 방식으로 이루어지고 있으며 좋은 성능을 보여준다. 하지만 좋은 성능에도 불구하고 판단에 대한 근거를 제공하지 못한다는 한계점을 지닌다. 판단에 대한 근거 및 설명을 제공하지 못할 경우, 데이터가 오염되거나 모델 자체에 결함이 발생해도 이를 발견하기 어렵다는 문제점을 지닌다. 결론적으로 사용자의 신뢰성을 잃게 된다. 이를 해결하기 위해 본 연구에서는 설명가능한 로그 이상탐지 시스템을 제안한다. 본 연구는 가장 먼저 로그 파싱을 진행해 로그 전처리를 수행한다. 이후 전처리된 로그들을 이용해 베이지안 확률 기반 순차 규칙추출을 진행한다. 결과적으로 "If 조건 then 결과, 사후확률(θ)" 형식의 규칙집합을 추출하며 이와 매칭될 경우 정상, 매칭되지 않을 경우, 이상행위로 판단하게 된다. 실험으로는 HDFS 로그 데이터셋을 활용했으며, 그 결과 F1score 92.7%의 성능을 나타내었다.

과탐지 감소를 위한 NSA 기반의 다중 레벨 이상 침입 탐지 (Negative Selection Algorithm based Multi-Level Anomaly Intrusion Detection for False-Positive Reduction)

  • 김미선;박경우;서재현
    • 정보보호학회논문지
    • /
    • 제16권6호
    • /
    • pp.111-121
    • /
    • 2006
  • 인터넷이 빠르게 성장함에 따라 네트워크 공격기법이 변화되고 새로운 공격 형태가 나타나고 있다. 네트워크상에서 알려진 침입의 탐지는 효율적으로 수행되고 있으나 알려지지 않은 침입에 대해서는 오탐지(false negative)나 과탐지(false positive)가 너무 높게 나타난다. 또한, 네트워크상에서 지속적으로 처리되는 대량의 패킷에 대하여 실시간적인 탐지와 새로운 침입 유형에 대한 대응방법과 인지능력에 한계가 있다. 따라서 다양한 대량의 트래픽에 대해서 탐지율을 높이고 과탐지를 감소할 수 있는 방법이 필요하다. 본 논문에서는 네트워크 기반의 이상 침입 탐지 시스템에서 과탐지를 감소하고, 침입 탐지 능력을 향상시키기 위하여 다차원 연관 규칙 마이닝과 수정된 부정 선택 알고리즘(Negative Selection Algorithm)을 결합한 다중 레벨 이상 침입 탐지 기술을 제안한다. 제안한 알고리즘의 성능 평가를 위하여 기존의 이상 탐지 알고리즘과 제안된 알고리즘을 수행하여, 각각의 과탐지율을 평가, 제시하였다.

Automatic Detection of Cow's Oestrus in Audio Surveillance System

  • Chung, Y.;Lee, J.;Oh, S.;Park, D.;Chang, H.H.;Kim, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권7호
    • /
    • pp.1030-1037
    • /
    • 2013
  • Early detection of anomalies is an important issue in the management of group-housed livestock. In particular, failure to detect oestrus in a timely and accurate way can become a limiting factor in achieving efficient reproductive performance. Although a rich variety of methods has been introduced for the detection of oestrus, a more accurate and practical method is still required. In this paper, we propose an efficient data mining solution for the detection of oestrus, using the sound data of Korean native cows (Bos taurus coreanea). In this method, we extracted the mel frequency cepstrum coefficients from sound data with a feature dimension reduction, and use the support vector data description as an early anomaly detector. Our experimental results show that this method can be used to detect oestrus both economically (even a cheap microphone) and accurately (over 94% accuracy), either as a standalone solution or to complement known methods.