• 제목/요약/키워드: Anomaly data detection

검색결과 402건 처리시간 0.022초

실시간 기반 매우 작은 객체 탐지를 위한 딥러닝 알고리즘 개발 (Development of a Deep Learning Algorithm for Small Object Detection in Real-Time )

  • 여우성;박미영
    • 한국산업융합학회 논문집
    • /
    • 제27권4_2호
    • /
    • pp.1001-1007
    • /
    • 2024
  • Recent deep learning algorithms for object detection in real-time play a crucial role in various applications such as autonomous driving, traffic monitoring, health care, and water quality monitoring. The size of small objects, in particular, significantly impacts the accuracy of detection models. However, data containing small objects can lead to underfitting issues in models. Therefore, this study developed a deep learning model capable of quickly detecting small objects to provide more accurate predictions. The RE-SOD (Residual block based Small Object Detector) developed in this research enhances the detection performance for small objects by using RGB separation preprocessing and residual blocks. The model achieved an accuracy of 1.0 in image classification and an mAP50-95 score of 0.944 in object detection. The performance of this model was validated by comparing it with real-time detection models such as YOLOv5, YOLOv7, and YOLOv8.

인지 라디오 네트워크를 위한 안전한 협력 센싱 기법 (Secure Cooperative Sensing Scheme for Cognitive Radio Networks)

  • 김태운;최우열
    • 한국통신학회논문지
    • /
    • 제41권8호
    • /
    • pp.877-889
    • /
    • 2016
  • 본 논문에서는 인지 라디오 네트워크를 구성하는 기본요소와, 그를 위협하는 공격 유형에 대하여 살펴본다. 특히, SSDF (Spectrum Sensing Data Falsification) 공격에 대하여 자세히 살펴보고, 이를 극복하기 위한 해법을 제시한다. SSDF 공격은 실현하기 쉬운 반면, 이를 탐지하고 대응하기 위하여 많은 노력이 필요하다. 본 논문에서 제안하는 기법은 악의적인 사용자와 그들의 센싱 리포트를 구분해 내기 위하여 이상 탐지 (Anomaly Detection) 기술을 사용 한다. 제안하는 기법의 유효성을 검증하기 위하여 시뮬레이션을 수행 하였으며, 그 결과 비정상적인 센싱 리포트를 효과적으로 구분해 내고 활성화 된 주 사용자(Primary User)를 정확히 탐지해 내는 것을 확인 할 수 있었다.

Data anomaly detection and Data fusion based on Incremental Principal Component Analysis in Fog Computing

  • Yu, Xue-Yong;Guo, Xin-Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권10호
    • /
    • pp.3989-4006
    • /
    • 2020
  • The intelligent agriculture monitoring is based on the perception and analysis of environmental data, which enables the monitoring of the production environment and the control of environmental regulation equipment. As the scale of the application continues to expand, a large amount of data will be generated from the perception layer and uploaded to the cloud service, which will bring challenges of insufficient bandwidth and processing capacity. A fog-based offline and real-time hybrid data analysis architecture was proposed in this paper, which combines offline and real-time analysis to enable real-time data processing on resource-constrained IoT devices. Furthermore, we propose a data process-ing algorithm based on the incremental principal component analysis, which can achieve data dimensionality reduction and update of principal components. We also introduce the concept of Squared Prediction Error (SPE) value and realize the abnormal detection of data through the combination of SPE value and data fusion algorithm. To ensure the accuracy and effectiveness of the algorithm, we design a regular-SPE hybrid model update strategy, which enables the principal component to be updated on demand when data anomalies are found. In addition, this strategy can significantly reduce resource consumption growth due to the data analysis architectures. Practical datasets-based simulations have confirmed that the proposed algorithm can perform data fusion and exception processing in real-time on resource-constrained devices; Our model update strategy can reduce the overall system resource consumption while ensuring the accuracy of the algorithm.

Anomaly Event Detection Algorithm of Single-person Households Fusing Vision, Activity, and LiDAR Sensors

  • Lee, Do-Hyeon;Ahn, Jun-Ho
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권6호
    • /
    • pp.23-31
    • /
    • 2022
  • 최근 코로나 19가 유행하고 더불어 고령화 시대와 1인 가구 증가로 인해 가구 구성원이 집에서 다양한 활동을 하며 머무는 시간이 매우 증가하였다. 본 연구에서는 노인을 포함한 1인 가구의 구성원들의 이상 징후를 탐지하기 위한 알고리즘을 제안한다. 홈 CCTV를 통한 영상 센서 알고리즘, 스마트폰에 내장된 가속도 센서를 이용한 활동 센서 알고리즘 및 2D LiDAR 센서 기반의 LiDAR 센서 알고리즘을 이용한 사람의 움직임 및 낙상 탐지 결과를 기반으로 이상 징후를 탐지하는 알고리즘들을 제안한다. 하지만, 각 단일 센서 기반 알고리즘은 센서가 가진 한계점으로 인해 특정 상황에서 이상징후를 탐지하기 어려운 단점을 가지고 있다. 그에 따라 단일 센서 기반 알고리즘만을 사용한 것보다 다양한 상황에서 이상 징후를 탐지하기 위해 각 알고리즘을 결합하는 융합 방식을 제안한다. 우리는 각 센서로 수집한 데이터를 통해 알고리즘들의 성능을 평가하고, 특정 시나리오들을 통하여 알고리즘 하나만 사용하여 정확한 이상 징후를 탐지할 수 없는 상황에서도 융합 방식을 통해 서로 보완하여 정확한 이상 징후를 효율적으로 탐지할 수 있음을 보여준다.

ICS 사이버 공격 탐지를 위한 딥러닝 전처리 방법 연구 (A Study on Preprocessing Method in Deep Learning for ICS Cyber Attack Detection)

  • 박성환;김민석;백은서;박정훈
    • 스마트미디어저널
    • /
    • 제12권11호
    • /
    • pp.36-47
    • /
    • 2023
  • 주요 산업현장에서 설비를 제어하는 산업제어시스템(ICS, Industrial Control System)이 네트워크로 다른 시스템과 연결되는 사례가 증가하고 있다. 또한, 이러한 통합과 함께 한 번의 외부 침입이 전체 시스템 마비로 이루어질 수 있는 지능화된 공격의 발달로, 산업제어시스템에 대한 보안에 대한 위험성과 파급력이 증가하고 있어, 사이버 공격에 대한 보호 및 탐지 방안의 연구가 활발하게 진행되고 있으며, 비지도학습 형태의 딥러닝 모델이 많은 성과를 보여 딥러닝을 기반으로 한 이상(Anomaly) 탐지 기술이 많이 도입되고 있다. 어어, 본 연구에서는 딥러닝 모델에 전처리 방법론을 적용하여 시계열 데이터의 이상 탐지성능을 향상시키는 것에 중점을 두어, 그 결과 웨이블릿 변환(WT, Wavelet Transform) 기반 노이즈 제거 방법론이 딥러닝 기반 이상 탐지의 전처리 방법론으로 효과적임을 알 수 있었으며, 특히 센서에 대한 군집화(Clustering)를 통해 센서의 특성을 반영하여 Dual-Tree Complex 웨이블릿 변환을 차등적으로 적용하였을 때 사이버 공격의 탐지성능을 높이는 것에 가장 효과적임을 확인하였다.

Detecting Anomalies in Time-Series Data using Unsupervised Learning and Analysis on Infrequent Signatures

  • Bian, Xingchao
    • 전기전자학회논문지
    • /
    • 제24권4호
    • /
    • pp.1011-1016
    • /
    • 2020
  • We propose a framework called Stacked Gated Recurrent Unit - Infrequent Residual Analysis (SG-IRA) that detects anomalies in time-series data that can be trained on streams of raw sensor data without any pre-labeled dataset. To enable such unsupervised learning, SG-IRA includes an estimation model that uses a stacked Gated Recurrent Unit (GRU) structure and an analysis method that detects anomalies based on the difference between the estimated value and the actual measurement (residual). SG-IRA's residual analysis method dynamically adapts the detection threshold from the population using frequency analysis, unlike the baseline model that relies on a constant threshold. In this paper, SG-IRA is evaluated using the industrial control systems (ICS) datasets. SG-IRA improves the detection performance (F1 score) by 5.9% compared to the baseline model.

무선 센서 네트워크에서 노이즈 감지를 위한 DWT-PCA 조합 (DWT-PCA Combination for Noise Detection in Wireless Sensor Networks)

  • 당 띠엔 빈;;김문성;추현승
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.144-146
    • /
    • 2020
  • Discrete Wavelet Transform (DWT) is an effective technique that is commonly used for detecting noise in collected data of an individual sensor. In addition, the detection accuracy can be significant improved by exploiting the correlation in the data of neighboring sensors of Wireless Sensor Networks (WSNs). Principal component analysis is the powerful technique to analyze the correlation in the multivariate data. In this paper, we propose a DWT-PCA combination scheme for noise detection (DWT-PCA-ND). Experimental results on a real dataset show a remarkably higher performance of DWT-PCA-ND comparing to conventional PCA scheme in detection of noise that is a popular anomaly in collected data of WSN.

Deep learning-based anomaly detection in acceleration data of long-span cable-stayed bridges

  • Seungjun Lee;Jaebeom Lee;Minsun Kim;Sangmok Lee;Young-Joo Lee
    • Smart Structures and Systems
    • /
    • 제33권2호
    • /
    • pp.93-103
    • /
    • 2024
  • Despite the rapid development of sensors, structural health monitoring (SHM) still faces challenges in monitoring due to the degradation of devices and harsh environmental loads. These challenges can lead to measurement errors, missing data, or outliers, which can affect the accuracy and reliability of SHM systems. To address this problem, this study proposes a classification method that detects anomaly patterns in sensor data. The proposed classification method involves several steps. First, data scaling is conducted to adjust the scale of the raw data, which may have different magnitudes and ranges. This step ensures that the data is on the same scale, facilitating the comparison of data across different sensors. Next, informative features in the time and frequency domains are extracted and used as input for a deep neural network model. The model can effectively detect the most probable anomaly pattern, allowing for the timely identification of potential issues. To demonstrate the effectiveness of the proposed method, it was applied to actual data obtained from a long-span cable-stayed bridge in China. The results of the study have successfully verified the proposed method's applicability to practical SHM systems for civil infrastructures. The method has the potential to significantly enhance the safety and reliability of civil infrastructures by detecting potential issues and anomalies at an early stage.

시계열 분석 기반 신뢰구간 추정을 통한 효율적인 이상감지 (Efficient Anomaly Detection Through Confidence Interval Estimation Based on Time Series Analysis)

  • 김영주;허유경;박진관;정민아
    • 한국통신학회논문지
    • /
    • 제39C권8호
    • /
    • pp.708-715
    • /
    • 2014
  • 본 논문은 센서 데이터의 이상을 감지하기 위하여 실시간 신뢰구간을 추정하였다. 실시간 신뢰구간 추정은 시계열분석 방법인 지수평활법과 이동평균법의 평균제곱오차를 비교하여 오차가 적은 이동평균법을 적용하였다. 이와 같이 추정된 신뢰구간을 측정된 센서 데이터가 이탈하게 되면 이상감지 경보를 통해 관리자에게 알려준다. 제안한 방법은 선박 내부의 실시간 이상감지를 위한 것으로 무선센서네트워크(WSN)와 사용자의 접근성을 높이기 위해 안드로이드 단말기를 사용하였다. 관리자는 실시간 신뢰구간에 따른 이상감지 정보를 활용하여 선박 내부에서 발생한 위급한 상황에서 신속하고 정확하게 의사결정을 함으로써 안전운항을 할 수 있다.

인공위성 해수면온도 편차 이용 한반도 연안 해역 고수온 탐지 : 2017-2018년도 (Preliminary Study on Detection of Marine Heat Waves using Satellite-based Sea Surface Temperature Anomaly in 2017-2018)

  • 김태호;양찬수
    • 해양환경안전학회지
    • /
    • 제25권6호
    • /
    • pp.678-686
    • /
    • 2019
  • 본 연구에서는 인공위성 해수면온도 편차(Sea Surface Temperature Anomaly, SSTA)를 이용하여 한반도 연안해역의 고수온 해역을 추출하고, 국립수산과학원의 고수온속보 발령 문서와 비교하였다. 일일 SSTA 이미지를 이용하여 임계값을 적용하는 고수온 탐지 알고리즘을 제안하였으며, 고수온 주의보는 2℃ 이상, 경보는 3℃ 이상인 것으로 가정하였다. 2017~2018년 7~9월의 일평균 SST를 기반으로 한 편차자료를 사용하였으며, 고수온속보에 사용되는 지역을 대상으로 위성기반 탐지 결과를 9개 영역으로 구분하고 비교하였다. 해역별 고수온 발생 횟수 비교 결과, 수온 관측 부이가 고르게 분포한 남해 연안은 고수온속보와 위성 탐지 횟수가 유사하게 나타났다. 반면에 다른 해역은 위성 탐지 횟수가 약 2배 이상 많았으며, 이는 고수온속보 발령이 해역의 일부 위치 수온만을 고려하기 때문인 것으로 판단된다. 본 연구 결과는 향후 위성기반 연안해역 고·저수온 모니터링 체계 개발에 활용하고자 한다.