Recent deep learning algorithms for object detection in real-time play a crucial role in various applications such as autonomous driving, traffic monitoring, health care, and water quality monitoring. The size of small objects, in particular, significantly impacts the accuracy of detection models. However, data containing small objects can lead to underfitting issues in models. Therefore, this study developed a deep learning model capable of quickly detecting small objects to provide more accurate predictions. The RE-SOD (Residual block based Small Object Detector) developed in this research enhances the detection performance for small objects by using RGB separation preprocessing and residual blocks. The model achieved an accuracy of 1.0 in image classification and an mAP50-95 score of 0.944 in object detection. The performance of this model was validated by comparing it with real-time detection models such as YOLOv5, YOLOv7, and YOLOv8.
본 논문에서는 인지 라디오 네트워크를 구성하는 기본요소와, 그를 위협하는 공격 유형에 대하여 살펴본다. 특히, SSDF (Spectrum Sensing Data Falsification) 공격에 대하여 자세히 살펴보고, 이를 극복하기 위한 해법을 제시한다. SSDF 공격은 실현하기 쉬운 반면, 이를 탐지하고 대응하기 위하여 많은 노력이 필요하다. 본 논문에서 제안하는 기법은 악의적인 사용자와 그들의 센싱 리포트를 구분해 내기 위하여 이상 탐지 (Anomaly Detection) 기술을 사용 한다. 제안하는 기법의 유효성을 검증하기 위하여 시뮬레이션을 수행 하였으며, 그 결과 비정상적인 센싱 리포트를 효과적으로 구분해 내고 활성화 된 주 사용자(Primary User)를 정확히 탐지해 내는 것을 확인 할 수 있었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권10호
/
pp.3989-4006
/
2020
The intelligent agriculture monitoring is based on the perception and analysis of environmental data, which enables the monitoring of the production environment and the control of environmental regulation equipment. As the scale of the application continues to expand, a large amount of data will be generated from the perception layer and uploaded to the cloud service, which will bring challenges of insufficient bandwidth and processing capacity. A fog-based offline and real-time hybrid data analysis architecture was proposed in this paper, which combines offline and real-time analysis to enable real-time data processing on resource-constrained IoT devices. Furthermore, we propose a data process-ing algorithm based on the incremental principal component analysis, which can achieve data dimensionality reduction and update of principal components. We also introduce the concept of Squared Prediction Error (SPE) value and realize the abnormal detection of data through the combination of SPE value and data fusion algorithm. To ensure the accuracy and effectiveness of the algorithm, we design a regular-SPE hybrid model update strategy, which enables the principal component to be updated on demand when data anomalies are found. In addition, this strategy can significantly reduce resource consumption growth due to the data analysis architectures. Practical datasets-based simulations have confirmed that the proposed algorithm can perform data fusion and exception processing in real-time on resource-constrained devices; Our model update strategy can reduce the overall system resource consumption while ensuring the accuracy of the algorithm.
최근 코로나 19가 유행하고 더불어 고령화 시대와 1인 가구 증가로 인해 가구 구성원이 집에서 다양한 활동을 하며 머무는 시간이 매우 증가하였다. 본 연구에서는 노인을 포함한 1인 가구의 구성원들의 이상 징후를 탐지하기 위한 알고리즘을 제안한다. 홈 CCTV를 통한 영상 센서 알고리즘, 스마트폰에 내장된 가속도 센서를 이용한 활동 센서 알고리즘 및 2D LiDAR 센서 기반의 LiDAR 센서 알고리즘을 이용한 사람의 움직임 및 낙상 탐지 결과를 기반으로 이상 징후를 탐지하는 알고리즘들을 제안한다. 하지만, 각 단일 센서 기반 알고리즘은 센서가 가진 한계점으로 인해 특정 상황에서 이상징후를 탐지하기 어려운 단점을 가지고 있다. 그에 따라 단일 센서 기반 알고리즘만을 사용한 것보다 다양한 상황에서 이상 징후를 탐지하기 위해 각 알고리즘을 결합하는 융합 방식을 제안한다. 우리는 각 센서로 수집한 데이터를 통해 알고리즘들의 성능을 평가하고, 특정 시나리오들을 통하여 알고리즘 하나만 사용하여 정확한 이상 징후를 탐지할 수 없는 상황에서도 융합 방식을 통해 서로 보완하여 정확한 이상 징후를 효율적으로 탐지할 수 있음을 보여준다.
주요 산업현장에서 설비를 제어하는 산업제어시스템(ICS, Industrial Control System)이 네트워크로 다른 시스템과 연결되는 사례가 증가하고 있다. 또한, 이러한 통합과 함께 한 번의 외부 침입이 전체 시스템 마비로 이루어질 수 있는 지능화된 공격의 발달로, 산업제어시스템에 대한 보안에 대한 위험성과 파급력이 증가하고 있어, 사이버 공격에 대한 보호 및 탐지 방안의 연구가 활발하게 진행되고 있으며, 비지도학습 형태의 딥러닝 모델이 많은 성과를 보여 딥러닝을 기반으로 한 이상(Anomaly) 탐지 기술이 많이 도입되고 있다. 어어, 본 연구에서는 딥러닝 모델에 전처리 방법론을 적용하여 시계열 데이터의 이상 탐지성능을 향상시키는 것에 중점을 두어, 그 결과 웨이블릿 변환(WT, Wavelet Transform) 기반 노이즈 제거 방법론이 딥러닝 기반 이상 탐지의 전처리 방법론으로 효과적임을 알 수 있었으며, 특히 센서에 대한 군집화(Clustering)를 통해 센서의 특성을 반영하여 Dual-Tree Complex 웨이블릿 변환을 차등적으로 적용하였을 때 사이버 공격의 탐지성능을 높이는 것에 가장 효과적임을 확인하였다.
We propose a framework called Stacked Gated Recurrent Unit - Infrequent Residual Analysis (SG-IRA) that detects anomalies in time-series data that can be trained on streams of raw sensor data without any pre-labeled dataset. To enable such unsupervised learning, SG-IRA includes an estimation model that uses a stacked Gated Recurrent Unit (GRU) structure and an analysis method that detects anomalies based on the difference between the estimated value and the actual measurement (residual). SG-IRA's residual analysis method dynamically adapts the detection threshold from the population using frequency analysis, unlike the baseline model that relies on a constant threshold. In this paper, SG-IRA is evaluated using the industrial control systems (ICS) datasets. SG-IRA improves the detection performance (F1 score) by 5.9% compared to the baseline model.
Discrete Wavelet Transform (DWT) is an effective technique that is commonly used for detecting noise in collected data of an individual sensor. In addition, the detection accuracy can be significant improved by exploiting the correlation in the data of neighboring sensors of Wireless Sensor Networks (WSNs). Principal component analysis is the powerful technique to analyze the correlation in the multivariate data. In this paper, we propose a DWT-PCA combination scheme for noise detection (DWT-PCA-ND). Experimental results on a real dataset show a remarkably higher performance of DWT-PCA-ND comparing to conventional PCA scheme in detection of noise that is a popular anomaly in collected data of WSN.
Seungjun Lee;Jaebeom Lee;Minsun Kim;Sangmok Lee;Young-Joo Lee
Smart Structures and Systems
/
제33권2호
/
pp.93-103
/
2024
Despite the rapid development of sensors, structural health monitoring (SHM) still faces challenges in monitoring due to the degradation of devices and harsh environmental loads. These challenges can lead to measurement errors, missing data, or outliers, which can affect the accuracy and reliability of SHM systems. To address this problem, this study proposes a classification method that detects anomaly patterns in sensor data. The proposed classification method involves several steps. First, data scaling is conducted to adjust the scale of the raw data, which may have different magnitudes and ranges. This step ensures that the data is on the same scale, facilitating the comparison of data across different sensors. Next, informative features in the time and frequency domains are extracted and used as input for a deep neural network model. The model can effectively detect the most probable anomaly pattern, allowing for the timely identification of potential issues. To demonstrate the effectiveness of the proposed method, it was applied to actual data obtained from a long-span cable-stayed bridge in China. The results of the study have successfully verified the proposed method's applicability to practical SHM systems for civil infrastructures. The method has the potential to significantly enhance the safety and reliability of civil infrastructures by detecting potential issues and anomalies at an early stage.
본 논문은 센서 데이터의 이상을 감지하기 위하여 실시간 신뢰구간을 추정하였다. 실시간 신뢰구간 추정은 시계열분석 방법인 지수평활법과 이동평균법의 평균제곱오차를 비교하여 오차가 적은 이동평균법을 적용하였다. 이와 같이 추정된 신뢰구간을 측정된 센서 데이터가 이탈하게 되면 이상감지 경보를 통해 관리자에게 알려준다. 제안한 방법은 선박 내부의 실시간 이상감지를 위한 것으로 무선센서네트워크(WSN)와 사용자의 접근성을 높이기 위해 안드로이드 단말기를 사용하였다. 관리자는 실시간 신뢰구간에 따른 이상감지 정보를 활용하여 선박 내부에서 발생한 위급한 상황에서 신속하고 정확하게 의사결정을 함으로써 안전운항을 할 수 있다.
본 연구에서는 인공위성 해수면온도 편차(Sea Surface Temperature Anomaly, SSTA)를 이용하여 한반도 연안해역의 고수온 해역을 추출하고, 국립수산과학원의 고수온속보 발령 문서와 비교하였다. 일일 SSTA 이미지를 이용하여 임계값을 적용하는 고수온 탐지 알고리즘을 제안하였으며, 고수온 주의보는 2℃ 이상, 경보는 3℃ 이상인 것으로 가정하였다. 2017~2018년 7~9월의 일평균 SST를 기반으로 한 편차자료를 사용하였으며, 고수온속보에 사용되는 지역을 대상으로 위성기반 탐지 결과를 9개 영역으로 구분하고 비교하였다. 해역별 고수온 발생 횟수 비교 결과, 수온 관측 부이가 고르게 분포한 남해 연안은 고수온속보와 위성 탐지 횟수가 유사하게 나타났다. 반면에 다른 해역은 위성 탐지 횟수가 약 2배 이상 많았으며, 이는 고수온속보 발령이 해역의 일부 위치 수온만을 고려하기 때문인 것으로 판단된다. 본 연구 결과는 향후 위성기반 연안해역 고·저수온 모니터링 체계 개발에 활용하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.