이 논문에서는 구조물의 동적응답을 입력으로 하고, 패턴인식을 위해 신경망기법(Neural Network, NN)을 사용하는 손상감지기법을 제시하였다. 입력된 동적응답, 즉 주파수응답함수(FRF) 또는 변형률 주파수응답함수(SFRF)의 변화를 정량적으로 표현하기 위해 신호변형지수(Signal Anomaly Index, SAI)를 고안하여 사용하였으며, 이 신호변형지수는 손상 전 및 손상 후의 구조물로부터 측정된 가속도 또는 동적 변형률 신호를 사용하여 계산된다. 제안된 알고리즘은 2단계로 구성되며, 1단계에서는 신호변형지수 값의 크기 변화를 사용하여 구조물의 손상발생 유무를 판별하고, 여기서 구조물에 손상이 발생한 것으로 분석되면 2단계에서 신경망기법을 사용한 패턴인식을 통해 손상의 위치를 찾아낸다. 이 방법의 타당성 및 적용성을 확인하기 위해 강교량 축소모형에 대한 실험을 수행하였다. 신경망의 학습에는 수치해석을 통해 생성한 가상 신호를 사용하였으며, 학습이 완료된 신경망과 실험을 통해 측정한 실제 신호를 사용하여 손상발견을 수행하였다. 모형 교량에 대한 적용 결과로부터 이 알고리즘의 타당성이 검증되었으며, 향후 실 교량에 대한 적용도 가능할 것으로 판단된다.
최근 인터넷 이용자들이 급격하게 증가하고 있으며, 초보수준의 일반 네트워크 사용자들도 인터넷상의 공개된 해킹 도구들을 사용하여 고도의 기술을 요하는 침입이 가능하여 해킹 문제가 더욱 심각해지고 있다. 해커들이 침입하기 위하여 취약점을 알아내려고 의도하는 다양한 형태의 침입시도를 사전에 탐지하여 침입이 일어나는 것을 미리 방어할 수 있는 침입시도탐지가 적극적인 예방 차원에서 더욱 필요하다. 기존의 포트 스캔이나 네트워크 취약점 공격에 대응하기 위한 네트워크 기반의 비정상 침입시도 탐지 알고리즘은 침입시도함지에 있어 몇 가지 한계점을 갖고 있다. 기존 알고리즘은 Slow Scan, Coordinated Scan을 할 경우 탐지할 수 없다는 것이다. 따라서 침입시도 유형에 제한을 받지 않고 침입시도에 관한 다양한 형태의 비정상 접속을 효과적으로 탐지할 수 있는 새로운 개념의 알고리즘이 요구된다. 본 논문에서는 세션 패턴과 탐지 오류율을 규칙기반으로 하는 침입시도 탐지알고리즘(Session patterns & FCM Anomaly Detector : SFAD)을 제안한다.
국내 보안관제센터들의 현황을 검토하였으며, 보안관제 체계의 특징인 패턴기반 보안관제체계와 중앙집중형 보안관제 체계에 대한 분석과 장단점을 분석하였다. 또한 국내 보안관제 체계 발전방안에서는 기존 패턴 기반의 중앙집중형 관제 체계가 가지고 있는 문제점을 개선하기 위해 이상행위 탐지기반의 허니넷과 다크넷을 분석하여 이를 적용한 발전 방안을 기술하였다.
본 연구는 선박용 공기압축기의 상태기반보전 시스템에 필요한 이상치 탐지 알고리즘 적용에 대한 실험적 연구로서 고장모사 실험을 통해 시계열 전류 센서 데이터를 이용한 이상탐지 적용 가능성을 확인하였다. 고장 유형 10개에 대해 실험실 규모의 고장 모사 실험을 수행하여 정상 운전데이터와 고장 데이터를 구축하였다. 실험 결과 구축된 이상탐지 모델은 시계열 데이터의 주기에 변화를 유발하는 이상은 잘 탐지하는 반면 미세한 부하 변동에 대한 탐지 성능은 떨어졌다. 또한 오토인코더를 이용한 시계열 이상탐지 모델은 입력 시퀀스의 길이와 초모수 조정에 따라 이상 탐지 성능이 상이한 것으로 나타났다.
스마트 공장 구축사업을 통해 생산 설비로부터 전력, 진동, 압력, 온도 등의 센서 데이터가 수집되고 있으며 데이터 분석을 통해 예지보전, 불량예측, 이상탐지 등의 서비스 개발이 진행되고 있다. 일반적으로 제조데이터의 경우 정상과 비정상 데이터의 불균형이 극심하여 이상탐지 서비스가 선호되고 있다. 본 논문에서는 이상탐지 서비스 개발의 전단계로 제조데이터의 특징 데이터 추출을 위해 FFT 방법을 사용하였으며, 이를 통해 생산되는 제품을 분류해보고 그 결과를 확인하였다. 즉, 제품별 대표 패턴을 FFT 변환 후 상관계수를 계산하여 제품분류가 가능한지 확인하였다.
인터넷과 개인용 컴퓨터가 발달하면서 다양하고 복잡한 공격들이 등장하기 시작했다. 공격들이 복잡해짐에 따라 기존에 사용하던 시그니처 기반의 탐지 방식으로 탐지가 어려워졌으며 이를 해결하기 위해 행위기반의 탐지를 위한 로그 이상탐지에 대한 연구가 주목 받기 시작했다. 최근 로그 이상탐지에 대한 연구는 딥러닝을 활용해 순서를 학습하는 방식으로 이루어지고 있으며 좋은 성능을 보여준다. 하지만 좋은 성능에도 불구하고 판단에 대한 근거를 제공하지 못한다는 한계점을 지닌다. 판단에 대한 근거 및 설명을 제공하지 못할 경우, 데이터가 오염되거나 모델 자체에 결함이 발생해도 이를 발견하기 어렵다는 문제점을 지닌다. 결론적으로 사용자의 신뢰성을 잃게 된다. 이를 해결하기 위해 본 연구에서는 설명가능한 로그 이상탐지 시스템을 제안한다. 본 연구는 가장 먼저 로그 파싱을 진행해 로그 전처리를 수행한다. 이후 전처리된 로그들을 이용해 베이지안 확률 기반 순차 규칙추출을 진행한다. 결과적으로 "If 조건 then 결과, 사후확률(θ)" 형식의 규칙집합을 추출하며 이와 매칭될 경우 정상, 매칭되지 않을 경우, 이상행위로 판단하게 된다. 실험으로는 HDFS 로그 데이터셋을 활용했으며, 그 결과 F1score 92.7%의 성능을 나타내었다.
사용자 비정상 행위를 탐지하기 위해서 기존의 연구들은 주로 통계적 기법을 이용해 왔다. 그러나 이들 연구들은 주로 사용자의 평균적인 행위를 분석하기 때문에 사용자의 비정상행위가 정확하게 탐지될 수 없다. 본 논문에서는 사용자의 정상행위를 모델링하는 새로운 클러스터링 방법을 제안한다. 클러스터링은 분석 환경에서 임의 개수의 빈발 영역을 식별할 수 있기 때문에 통계적 기법에서의 부정확한 모델링 방법을 개선할 수 있다. 빈발 공통 지식은 트랜잭션 단위로 발생되는 유사 데이터 객체들의 빈도수와 각 트랜잭션에 포함된 유사 데이터 객체들의 반복 비율로 나타낼 수 있다. 이와 더불어, 제안된 방법은 공통 지식을 축약된 프로파일로 유지하는 방법을 설명한다. 따라서 생성된 프로파일을 이용하여 온라인 트랜잭션에서의 비정상 행위를 쉽게 탐지할 수 있다.
New motor development requires high-speed load testing using dynamo equipment to calculate the efficiency of the motor. Abnormal noise and vibration may occur in the test equipment rotating at high speed due to misalignment of the connecting shaft or looseness of the fixation, which may lead to safety accidents. In this study, three single-axis vibration sensors for X, Y, and Z axes were attached on the surface of the test motor to measure the vibration value of vibration. Analog data collected from these sensors was used in classification models for anomaly detection. Since the classification accuracy was around only 93%, commonly used hyperparameter optimization techniques such as Grid search, Random search, and Bayesian Optimization were applied to increase accuracy. In addition, Response Surface Method based on Design of Experiment was also used for hyperparameter optimization. However, it was found that there were limits to improving accuracy with these methods. The reason is that the sampling data from an analog signal does not reflect the patterns hidden in the signal. Therefore, in order to find pattern information of the sampling data, we obtained descriptive statistics such as mean, variance, skewness, kurtosis, and percentiles of the analog data, and applied them to the classification models. Classification models using descriptive statistics showed excellent performance improvement. The developed model can be used as a monitoring system that detects abnormal conditions of the motor test.
KSII Transactions on Internet and Information Systems (TIIS)
/
제2권3호
/
pp.135-149
/
2008
Traditional attack detection schemes based on packets or flows have very high computational complexity. And, network based anomaly detection schemes can reduce the complexity, but they have a limitation to figure out the pattern of the distributed global scale network attack. In this paper, we propose an efficient and fast method for detecting distributed global-scale network attack symptoms in high-speed backbone networks. The proposed method is implemented at the aggregate traffic level. So, our proposed scheme has much lower computational complexity, and is implemented in very high-speed backbone networks. In addition, the proposed method can detect attack patterns, such as attacks in which the target is a certain host or the backbone infrastructure itself, via collaboration of edge routers on the backbone network. The effectiveness of the proposed method are demonstrated via simulation.
본 연구에서는 인공위성 해수면온도 편차(Sea Surface Temperature Anomaly, SSTA)를 이용하여 한반도 연안해역의 고수온 해역을 추출하고, 국립수산과학원의 고수온속보 발령 문서와 비교하였다. 일일 SSTA 이미지를 이용하여 임계값을 적용하는 고수온 탐지 알고리즘을 제안하였으며, 고수온 주의보는 2℃ 이상, 경보는 3℃ 이상인 것으로 가정하였다. 2017~2018년 7~9월의 일평균 SST를 기반으로 한 편차자료를 사용하였으며, 고수온속보에 사용되는 지역을 대상으로 위성기반 탐지 결과를 9개 영역으로 구분하고 비교하였다. 해역별 고수온 발생 횟수 비교 결과, 수온 관측 부이가 고르게 분포한 남해 연안은 고수온속보와 위성 탐지 횟수가 유사하게 나타났다. 반면에 다른 해역은 위성 탐지 횟수가 약 2배 이상 많았으며, 이는 고수온속보 발령이 해역의 일부 위치 수온만을 고려하기 때문인 것으로 판단된다. 본 연구 결과는 향후 위성기반 연안해역 고·저수온 모니터링 체계 개발에 활용하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.