Abstract
For detecting an intrusion based on the anomaly of a user's activities, previous works are concentrated on statistical techniques in order to analyze an audit data set. However. since they mainly analyze the average behavior of a user's activities, some anomalies can be detected inaccurately. In this paper, a new clustering algorithm for modeling the normal pattern of a user's activities is proposed. Since clustering can identify an arbitrary number of dense ranges in an analysis domain, it can eliminate the inaccuracy caused by statistical analysis. Also, clustering can be used to model common knowledge occurring frequently in a set of transactions. Consequently, the common activities of a user can be found more accurately. The common knowledge is represented by the occurrence frequency of similar data objects by the unit of a transaction as veil as the common repetitive ratio of similar data objects in each transaction. Furthermore, the proposed method also addresses how to maintain identified common knowledge as a concise profile. As a result, the profile can be used to detect any anomalous behavior In an online transaction.
사용자 비정상 행위를 탐지하기 위해서 기존의 연구들은 주로 통계적 기법을 이용해 왔다. 그러나 이들 연구들은 주로 사용자의 평균적인 행위를 분석하기 때문에 사용자의 비정상행위가 정확하게 탐지될 수 없다. 본 논문에서는 사용자의 정상행위를 모델링하는 새로운 클러스터링 방법을 제안한다. 클러스터링은 분석 환경에서 임의 개수의 빈발 영역을 식별할 수 있기 때문에 통계적 기법에서의 부정확한 모델링 방법을 개선할 수 있다. 빈발 공통 지식은 트랜잭션 단위로 발생되는 유사 데이터 객체들의 빈도수와 각 트랜잭션에 포함된 유사 데이터 객체들의 반복 비율로 나타낼 수 있다. 이와 더불어, 제안된 방법은 공통 지식을 축약된 프로파일로 유지하는 방법을 설명한다. 따라서 생성된 프로파일을 이용하여 온라인 트랜잭션에서의 비정상 행위를 쉽게 탐지할 수 있다.