• Title/Summary/Keyword: Anomaly Intrusion

Search Result 155, Processing Time 0.022 seconds

A Study on Traffic Anomaly Detection Scheme Based Time Series Model (시계열 모델 기반 트래픽 이상 징후 탐지 기법에 관한 연구)

  • Cho, Kang-Hong;Lee, Do-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5B
    • /
    • pp.304-309
    • /
    • 2008
  • This paper propose the traffic anomaly detection scheme based time series model. We apply ARIMA prediction model to this scheme and transform the value of the abnormal symptom into the probability value to maximize the traffic anomaly symptom detection. For this, we have evaluated the abnormal detection performance for the proposed model using total traffic and web traffic included the attack traffic. We will expect to have an great effect if this scheme is included in some network based intrusion detection system.

Power control in Ad Hoc network using ZigBee/IEEE802.15.4 Standard (ZigBee/IEEE802.15.4 표준을 사용하는 Ad Hoc 네트워크 상의 전력 통제)

  • Kirubakaran K.;Lee Jae-Kwang
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 2006.06a
    • /
    • pp.219-222
    • /
    • 2006
  • In this paper an intrusion detection system technique of wireless Ad Hoc network is explained and the advantage of making them work in IEEE 802.15.4/ZigBee wireless standard is also discussed. The methodology that is mentioned here is intrusion detection architecture based on a local intrusion database [1]. An ad hoc network is a collection of nodes that is connected through a wireless medium forming rapidly changing topologies. Due to increased connectivity (especially on the Internet), and the vast spectrum of financial possibilities that are opening up, more and more systems are subject to attack by intruders. An ideal IDS should able to detect an anomaly caused by the intruders quickly so that the misbehaving node/nodes can be identified and appropriate actions (e.g. punish or avoid misbehaving nodes) can be taken so that further damage to the network is minimized

  • PDF

FLORA: Fuzzy Logic - Objective Risk Analysis for Intrusion Detection and Prevention

  • Alwi M Bamhdi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.179-192
    • /
    • 2023
  • The widespread use of Cloud Computing, Internet of Things (IoT), and social media in the Information Communication Technology (ICT) field has resulted in continuous and unavoidable cyber-attacks on users and critical infrastructures worldwide. Traditional security measures such as firewalls and encryption systems are not effective in countering these sophisticated cyber-attacks. Therefore, Intrusion Detection and Prevention Systems (IDPS) are necessary to reduce the risk to an absolute minimum. Although IDPSs can detect various types of cyber-attacks with high accuracy, their performance is limited by a high false alarm rate. This study proposes a new technique called Fuzzy Logic - Objective Risk Analysis (FLORA) that can significantly reduce false positive alarm rates and maintain a high level of security against serious cyber-attacks. The FLORA model has a high fuzzy accuracy rate of 90.11% and can predict vulnerabilities with a high level of certainty. It also has a mechanism for monitoring and recording digital forensic evidence which can be used in legal prosecution proceedings in different jurisdictions.

A Real-Time Intrusion Detection based on Monitoring in Network Security (네트워크 보안에서 모니터링 기반 실시간 침입 탐지)

  • Lim, Seung-Cheol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.9-15
    • /
    • 2013
  • Recently, Intrusion detection system is an important technology in computer network system because of has seen a dramatic increase in the number of attacks. The most of intrusion detection methods do not detect intrusion on real-time because difficult to analyze an auditing data for intrusions. A network intrusion detection system is used to monitors the activities of individual users, groups, remote hosts and entire systems, and detects suspected security violations, by both insider and outsiders, as they occur. It is learns user's behavior patterns over time and detects behavior that deviates from these patterns. In this paper has rule-based component that can be used to encode information about known system vulnerabilities and intrusion scenarios. Integrating the two approaches makes Intrusion Detection System a comprehensive system for detecting intrusions as well as misuse by authorized users or Anomaly users (unauthorized users) using RFM analysis methodology and monitoring collect data from sensor Intrusion Detection System(IDS).

Performance Improvement of Infusion Detection System based on Hidden Markov Model through Privilege Flows Modeling (권한이동 모델링을 통한 은닉 마르코프 모델 기반 침입탐지 시스템의 성능 향상)

  • 박혁장;조성배
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.6
    • /
    • pp.674-684
    • /
    • 2002
  • Anomaly detection techniques have teen devised to address the limitations of misuse detection approach for intrusion detection. An HMM is a useful tool to model sequence information whose generation mechanism is not observable and is an optimal modeling technique to minimize false-positive error and to maximize detection rate, However, HMM has the short-coming of login training time. This paper proposes an effective HMM-based IDS that improves the modeling time and performance by only considering the events of privilege flows based on the domain knowledge of attacks. Experimental results show that training with the proposed method is significantly faster than the conventional method trained with all data, as well as no loss of recognition performance.

Sequence based Intrusion Detection using Similarity Matching of the Multiple Sequence Alignments (다중서열정렬의 유사도 매칭을 이용한 순서기반 침입탐지)

  • Kim Yong-Min
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.1
    • /
    • pp.115-122
    • /
    • 2006
  • The most methods for intrusion detection are based on the misuse detection which accumulates hewn intrusion information and makes a decision of an attack against any behavior data. However it is very difficult to detect a new or modified aoack with only the collected patterns of attack behaviors. Therefore, if considering that the method of anomaly behavior detection actually has a high false detection rate, a new approach is required for very huge intrusion patterns based on sequence. The approach can improve a possibility for intrusion detection of known attacks as well as modified and unknown attacks in addition to the similarity measurement of intrusion patterns. This paper proposes a method which applies the multiple sequence alignments technique to the similarity matching of the sequence based intrusion patterns. It enables the statistical analysis of sequence patterns and can be implemented easily. Also, the method reduces the number of detection alerts and false detection for attacks according to the changes of a sequence size.

Efficient Feature Selection Based Near Real-Time Hybrid Intrusion Detection System (근 실시간 조건을 달성하기 위한 효과적 속성 선택 기법 기반의 고성능 하이브리드 침입 탐지 시스템)

  • Lee, Woosol;Oh, Sangyoon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.12
    • /
    • pp.471-480
    • /
    • 2016
  • Recently, the damage of cyber attack toward infra-system, national defence and security system is gradually increasing. In this situation, military recognizes the importance of cyber warfare, and they establish a cyber system in preparation, regardless of the existence of threaten. Thus, the study of Intrusion Detection System(IDS) that plays an important role in network defence system is required. IDS is divided into misuse and anomaly detection methods. Recent studies attempt to combine those two methods to maximize advantagesand to minimize disadvantages both of misuse and anomaly. The combination is called Hybrid IDS. Previous studies would not be inappropriate for near real-time network environments because they have computational complexity problems. It leads to the need of the study considering the structure of IDS that have high detection rate and low computational cost. In this paper, we proposed a Hybrid IDS which combines C4.5 decision tree(misuse detection method) and Weighted K-means algorithm (anomaly detection method) hierarchically. It can detect malicious network packets effectively with low complexity by applying mutual information and genetic algorithm based efficient feature selection technique. Also we construct upgraded the the hierarchical structure of IDS reusing feature weights in anomaly detection section. It is validated that proposed Hybrid IDS ensures high detection accuracy (98.68%) and performance at experiment section.

Anomaly behavior detection using Negative Selection algorithm based anomaly detector (Negative Selection 알고리즘 기반 이상탐지기를 이용한 이상행 위 탐지)

  • 김미선;서재현
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.391-394
    • /
    • 2004
  • Change of paradigm of network attack technique was begun by fast extension of the latest Internet and new attack form is appearing. But, Most intrusion detection systems detect informed attack type because is doing based on misuse detection, and active correspondence is difficult in new attack. Therefore, to heighten detection rate for new attack pattern, visibilitys to apply human immunity mechanism are appearing. In this paper, we create self-file from normal behavior profile about network packet and embody self recognition algorithm to use self-nonself discrimination in the human immune system to detect anomaly behavior. Sense change because monitors self-file creating anomaly detector based on Negative Selection Algorithm that is self recognition algorithm's one and detects anomaly behavior. And we achieve simulation to use DARPA Network Dataset and verify effectiveness of algorithm through the anomaly detection rate.

  • PDF

Intrusion Detection Method Using Unsupervised Learning-Based Embedding and Autoencoder (비지도 학습 기반의 임베딩과 오토인코더를 사용한 침입 탐지 방법)

  • Junwoo Lee;Kangseok Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.8
    • /
    • pp.355-364
    • /
    • 2023
  • As advanced cyber threats continue to increase in recent years, it is difficult to detect new types of cyber attacks with existing pattern or signature-based intrusion detection method. Therefore, research on anomaly detection methods using data learning-based artificial intelligence technology is increasing. In addition, supervised learning-based anomaly detection methods are difficult to use in real environments because they require sufficient labeled data for learning. Research on an unsupervised learning-based method that learns from normal data and detects an anomaly by finding a pattern in the data itself has been actively conducted. Therefore, this study aims to extract a latent vector that preserves useful sequence information from sequence log data and develop an anomaly detection learning model using the extracted latent vector. Word2Vec was used to create a dense vector representation corresponding to the characteristics of each sequence, and an unsupervised autoencoder was developed to extract latent vectors from sequence data expressed as dense vectors. The developed autoencoder model is a recurrent neural network GRU (Gated Recurrent Unit) based denoising autoencoder suitable for sequence data, a one-dimensional convolutional neural network-based autoencoder to solve the limited short-term memory problem that GRU can have, and an autoencoder combining GRU and one-dimensional convolution was used. The data used in the experiment is time-series-based NGIDS (Next Generation IDS Dataset) data, and as a result of the experiment, an autoencoder that combines GRU and one-dimensional convolution is better than a model using a GRU-based autoencoder or a one-dimensional convolution-based autoencoder. It was efficient in terms of learning time for extracting useful latent patterns from training data, and showed stable performance with smaller fluctuations in anomaly detection performance.

Generation of Finite Automata for Intrusion Detection (침입탐지를 위한 유한상태기계의 생성 기법)

  • Lim, Young-Hwan;Wee, Kyu-Bum
    • The KIPS Transactions:PartC
    • /
    • v.10C no.2
    • /
    • pp.119-124
    • /
    • 2003
  • Although there have been many studies on using finite automata for intrusion detection, it has been a difficult problem to generate compact finite automata automatically. In a previous research an approach to profile normal behaviors using finite automata was proposed. They divided the system call sequence of each process into three parts prefix, main portion, and suffix, and then substituted macros for frequently occurring substrings. However, the procedure was not automatic. In this paper we present algorithms to automatically generate intrusion detection automata from the sequence of system calls resulting from the normal runs of the programs. We also show the effectiveness of the proposed method through experiments.