• Title/Summary/Keyword: Anodized implant surface

Search Result 58, Processing Time 0.031 seconds

In vivo comparison between the effects of chemically modified hydrophilic and anodically oxidized titanium surfaces on initial bone healing

  • Lee, Hyo-Jung;Yang, Il-Hyung;Kim, Seong-Kyun;Yeo, In-Sung;Kwon, Taek-Ka
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.3
    • /
    • pp.94-100
    • /
    • 2015
  • Purpose: The aim of this study was to investigate the combined effects of physical and chemical surface factors on in vivo bone responses by comparing chemically modified hydrophilic sandblasted, large-grit, acid-etched (modSLA) and anodically oxidized hydrophobic implant surfaces. Methods: Five modSLA implants and five anodized implants were inserted into the tibiae of five New Zealand white rabbits (one implant for each tibia). The characteristics of each surface were determined using field emission scanning electron microscopy, energy dispersive spectroscopy, and confocal laser scanning microscopy before the installation. The experimental animals were sacrificed after 1 week of healing and histologic slides were prepared from the implant-tibial bone blocks removed from the animals. Histomorphometric analyses were performed on the light microscopic images, and bone-to-implant contact (BIC) and bone area (BA) ratios were measured. Nonparametric comparison tests were applied to find any significant differences (P<0.05) between the modSLA and anodized surfaces. Results: The roughness of the anodized surface was $1.22{\pm}0.17{\mu}m$ in Sa, which was within the optimal range of $1.0-2.0{\mu}m$ for a bone response. The modSLA surface was significantly rougher at $2.53{\pm}0.07{\mu}m$ in Sa. However, the modSLA implant had significantly higher BIC than the anodized implant (P=0.02). Furthermore, BA ratios did not significantly differ between the two implants, although the anodized implant had a higher mean value of BA (P>0.05). Conclusions: Within the limitations of this study, the hydrophilicity of the modSLA surface may have a stronger effect on in vivo bone healing than optimal surface roughness and surface chemistry of the anodized surface.

Adhesion of Plasma Spray Coated Hydroxyapatite Film on the Two-Step Anodized Dental Implant

  • Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.126-126
    • /
    • 2012
  • In this study, adhesion of plasma spray coated hydroxyapatite film on the two-step anodized dental implant was investigated. The plasma spray was carried out on the dental implant after two step anodization. The adhesion of coated HA film was investigated by FE-SEM after fatigue test. In the case of two-step anodized implant showed a good adhesion between implant and coated film.

  • PDF

Bone Response to Anodized Titanium Implants in Rabbits

  • Lee, Jae-Hyun;Lee, Cheol-Won;Kim, Chang-Hyen;Pyo, Sung-Woon
    • Journal of Korean Dental Science
    • /
    • v.4 no.1
    • /
    • pp.26-32
    • /
    • 2011
  • Purpose: The quality of implant surface is one of the factors that influence wound healing of implant site and subsequently affect osseointegration. The objective of modification of the surface properties of an implant is to affect the biological consequence. The purpose of this study is to evaluate the biologic response of osseous tissue to anodized implants. Materials and Methods: Two machined titanium implants for control group were installed in a tibia of each rabbit and two anodized implants for test group were installed in the other tibia of each rabbit. At the moment the implants were installed, resonance frequency analysis (RFA) values were measured. After healing periods of 1, 2, 3, and 7 weeks, the implants were uncovered and RFA values were measured again. Removal torque was measured for one implant in the test group and one implant in the control group. Histological evaluation was executed in the other implants. Results: Both of test group and control group have the tendency of greater RFA change rate and removal torque value as healing periods became longer, but were statistically insignificant (P>0.05). However, in the case of the same healing period, the test group tended to have greater RFA change rate and removal torque than the control group (P<0.05). More active new bone formation from endosteal surface was noted on the anodized surface than machined surface in specimen after 1 week. There were no significant differences between the test group and control group in histological evaluations. Conclusion: In summary, the anodized surface showed slightly favorable results and it is postulated that it may facilitate improved stability in bone.

EFFECT OF VARIOUS INODIZING CHARACTERISTICS ON BONE INTEGRATION OF TITANIUM IMPLANT SURFACE DESIGN (다양한 양극산화막 처리방법이 임프란트 골유착에 미치는 영향)

  • Cha, Soo-Ryun;Lee, Jun;Min, Seung-Ki
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.5
    • /
    • pp.417-427
    • /
    • 2008
  • The aim of this study is to investigate the effect of anodizing surface to osseointegration of implant by using of resonance frequency analysis (RFA), quantitative and qualitative assessment of an anodically modified implant type with regard to osseous healing qualities. A total of 96 screw-shaped implants were prepared for this study. 72 implants were prepared by electrochemical oxidation with different ways. 24 (group 1 SP) were prepared at galvanostatic mode in 0.25M sulfuric acid and phosphoric acid. 24 (group 2GC) were prepared at galvanostatic mode in calcium glycerophosphate and calcium acetate and 24 (group 3 CMP (Calcium Metaphosphate) Coating were prepared at galvanostatic mode in 0.25M sulfuric acid and phosphoric acid followed by CMP coating. Rest of 24 (control group were as a control group of RBM surface. Bone tissue responses were evaluated by resonance frequency analysis (RFA) that were undertaken at 2, 4 and 6 weeks after implant placement in the mandible of mini-pig. Group 1 SP (anodized with sulfuric acid and phosphoric acid implants) demonstrated slightly stronger bone responses than control Group RBM. Group 2 GC (anodized surface with calcium glycerophosphate and calcium acetate implants) demonstrated no difference which were compared with control group. Group 3 GMP (anodized and CMP coated implants) demonstrated slightly stronger and faster bone responses than any other implants. But, all observation result of RF A showed no significant differences between experimental groups with various surface type. Histomorphometric evaluation demonstrated significantly higher bone-to-implant contact for group 2 GC. Significantly more bone formation was found inside threaded area for group 2 GC. It was concluded that group 2 GC (anodized surface with calcium glycerophosphate and calcium acetate implants) showed more effects on the bone tissue responses than RBM surface in initial period of implantation. In addition, CMP showed a tendency to promote bone tissue responses.

Wettability of titanium implants depending upon surface properties (타이타늄 표면 처리 특성에 따른 젖음성에 관한 연구)

  • Han, Young-Soo;Shin, Sang-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.1
    • /
    • pp.12-20
    • /
    • 2009
  • Statement of problem: When an implant is fixed, a fixture comes into contact with a tissue fluid. Adhesion of a tissue fluid to a surface of implant is various case by case. Purpose: The ultimate goal of this work is to analyze a correlation between a surface roughness and wettability of implant specimens. A measurement for wettability is performed considering 4 types of specimen implant with surface treatments different from each other to investigate the change of wettability with the elapse of time. Material and methods: Firstly, 20 specimens of titanium were prepared. The specimen were made of a commercial Titanium Grade IV with the diameter of 10 mm and the thickness of 1 mm. According to the method of surface treatment, the specimens were classified into 4 groups of 5 specimens per group. Group A: Machined Surface Group B: Anodized surface Group C: RBM (HA blasting) surface Group D: CMP (calcium methaphosphate) coating surface. Surface roughness of specimen was measured using SV-3000S4 (Mituyoto, Japan). The measurement was based on the standard of JIS1994. Sessile drop method was used to measure the wettability, which measures contact angle between implant disc and saline with the time interval of 5, 10, and 15 seconds. SPSS 11.0 was used to analyze the collected data. In order to analyze the difference of wettability and surface roughness according to implant surface treatment method. The statistical significance was tested with the confidence level of 95%. Pearson's correlation coefficient was used to evaluate the correlation of surface roughness and wettability. Results: The difference of surface roughness was statistically significant in the order of Group C ($1.69{\pm}0.26$), Group D ($1.58{\pm}0.16$), Group B ($0.78{\pm}0.14$) Group A ($0.18{\pm}0.05$). The wettability has also a statistically significant difference, which was in the order of group B ($17.70{\pm}2.66$), Group C ($27.86{\pm}4.52$), Group D ($66.28{\pm}3.70$) Group A ($70.52{\pm}8.00$). There was no difference in wettability with the passage of time. Conclusions: 1. The surface roughness was high in the order of RBM, CMP, Anodized, Machined group (P<.05). 2. The wettability was high in the order of Anodized, RBM, CMP, Machined group (P<.05). 3. There was no statistical significance in the correlation of surface roughness and wettability.

The effects of Hydroxyapatite nano-coating implants on healing of surgically created circumferential gap in dogs

  • Chae, Gyung-Joon;Lim, Hyun-Chang;Choi, Jung-Yoo;Chung, Sung-Min;Lee, In-Seop;Cho, Kyoo-Sung;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.sup2
    • /
    • pp.373-384
    • /
    • 2008
  • Purpose: The aim of this study is to compare the healing response of various Hydroxyapatite(HA) coated dental implants by Ion-Beam Assisted Deposition(IBAD) placed in the surgically created circumferential gap in dogs. Materials and methods: In four mongrel dogs, all mandibular premolars and the first molar were extracted. After an 8 weeks healing period, six submerged type implants were placed and the circumferential cylindrical 2mm coronal defects around the implants were made surgically with customized step drills. Groups were divided into six groups : anodized surface, anodized surface with 150nm HA and heat treatment, anodized surface with 300nm HA and heat treatment, anodized surface with 150nm HA and no heat treatment, and anodized surface with 150nm HA, heat treatment and bone graft, anodized surface with bone graft. The dogs were sacrificed following 12 weeks healing period. Specimens were analyzed histologically and histomorphometrically. Results: During the healing period, healing was uneventful and implants were well maintained. Anodized surface with HA coating and $430^{\circ}C$ heat treatment showed an improved regenerative characteristics. Most of the gaps were filled with newly regenerated bone. The implant surface was covered with bone layer as base for intensive bone formation and remodeling. In case that graft the alloplastic material to the gaps, most of the coronal gaps were filled with newly formed bone and remaining graft particles. The bone-implant contact and bone density parameters showed similar results with the histological findings. The bone graft group presented the best bone-implant contact value which had statistical significance. Conclusion: Within the scope of this study, nano-scale HA coated dental implants appeared to have significant effect on the development of new bone formation. And additional bone graft is an effective method in overcoming the gaps around the implants.

BONE RESPONSE OF TWO DIFFERENT SURFACE TITANIUM SUBPERIOSTEAL IMPLANTS - ANODIZED SURFACE, IBAD HA COATING SURFACE (티타늄 임플랜트의 두 가지 표면처리방식에 대한 골반응 - 양극 산화표면, IBAD HA 코팅 표면)

  • Lee, In-Ku;Suh, Kyu-Won;Choi, Joon-Eon;Jung, Sung-Min;Ryu, Jae-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.1
    • /
    • pp.131-143
    • /
    • 2007
  • Statement of the problem: In case of poor bone quality or immediately loaded implant, various strategies have been developed focusing on the surface of materials to improve direct implant fixation to the bone. The microscopic properties of implant surfaces play a major role in the osseous healing of dental implant. Purpose of study: This study was undertaken to evaluate bone response of ion beam-assisted deposition(IBAD) of hydroxyapatite(HA) on the anodized surface of subperiosteal titanium implants. Material and methods: Two half doughnut shape subperiosteal titanium implants were made. The control group was treated with Anodized surface treatment and the test group was treated with IBAD of HA on control surface. Then two implants inserted together into the subperiosteum of the skull of 30 rats and histological response around implant was observed under LM(light microscope) and TEM(transmission electron microscope) on 4th, 6th and 8th week. Results: Many subperiosteal implants were fixed with fibrous connective tissue not with bony tissue because of weak primary stability. The control group observed poor bone response and there was no significant change at any observation time. However the test group showed advanced bone formation and showed direct bone to implant contact under LM on 8th week. The test group observed much rER in the cell of osteoblast but the control group showed little rER under TEM. Conclusions: The test group showed better bone formation than the control group at the condition of weak primary stability. With these results IBAD surface treatment method on Anodized surface, may be good effect at the condition of weak primary stability.

A STUDY ON OSTEOBLAST-LIKE CELL RESPONSES TO SURFACE-MODIFIED TITANIUM

  • Hong Min-Ah;Kim Yung-Soo;Kim Chang-Whe;Jang Kyung-Su;Lee Jae-Il
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.3
    • /
    • pp.300-318
    • /
    • 2003
  • Statement of problem: The success of implants depends on intimate and direct contact of implant material on bone tissue and on functional relationship with soft tissue contact. Creation and maintenance of osseointegration depend on the understanding of the tissue's healing, repairing, and remodeling capacity and these capacities rely on cellular behavior. Altering the surface properties can modify cellular responses such as cell adhesion, cell motility, bone deposition, Therefore, various implant surface treatment methods are being developed for the improved bone cell responses. Purpose: The purpose of this study was to evaluate the responses of osteoblast-like cells to surface-modified titanium. Materials and Methods: The experiment was composed of four groups. Group 1 represented the electropolished surface. Group 2 surfaces were machined surface. Group 3 and Group 4 were anodized surfaces. Group 3 had low roughness and Group 4 had high roughness. Physicochemical properties and microstructures of the discs were examined and the responses of osteoblast-like cells to the discs were investigated. The microtopography was observed by SEM. The roughness was measured by three-dimension roughness measuring system. The microstructure was analyzed by XRD, AES. To evaluate cell responses to modified titanium surfaces, osteoblasts isolated from calvaria of neonatal rat were cultured. Cell count, morphology, total protein measurement and alkaline phosphatase activities of the cultures were examined. Results and Conclusion: The results were as follows 1. The four groups showed specific microtopography respectively. Anodized group showed grain structure with micropores. 2. Surface roughness values were, from the lowest to the highest, electropolished group, machined group, low roughness anodized group, and high roughness anodized group. 3. Highly roughened anodized group was found to have increased surface oxide thickness and surface crystallinity. 4. The morphology of cells, flattened or spherical, were different from each other. In the electropolished group and machined group, the cells were almost flattened. In two anodized groups, some cells were spherical and other cells were flattened. And the 14 day culture cells of all of the groups were nearly flattened due to confluency. 5. The number of attached cells was highest in low roughness anodized group. And the machined group had significantly lower cell count than any other groups(P<.05). 6. Total protein contents showed no difference among groups. 7. The level of alkaline phosphatase activities was higher in the anodized groups than electropolished and machined groups(P<.05).

EFFECT OF DIFFERENT SURFACE TREATMENTS TO INCREASE BIOCOMPATIBILITY OF DENTAL IMPLANT (임플랜트 표면처리가 생체활성에 미치는 영향)

  • Lee, Ho-Jin;Song, Kwang-Yeob;Yoon, Tae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.5
    • /
    • pp.594-605
    • /
    • 2006
  • Statement of problem: Modification of titanium implant surface has potential to ensure clinically favorable performance that several surface modification technologies have been introduced. Among the methods. anodizing method and sol-gel hydroxyapatite coating method have gained much interest due to its roughness and chemical composition of the coating layer, but more of its biocompatibility result is required. Purpose : The purpose of this study was to compare bone-implant interface shear strength of four different surface treated implants as time elapsed. Resonance frequency analysis(RFA) and removal torque measurement methods were employed to measure implant stability at one week and six week after implantation. Material and method: A total of 80 screw-shaped implant [20 machined, 20 resorbable media blasted(RBM), 20 anodized, and 20 anodized+hydroxyapatite sol-gel coated] were prepared, and one of each group was implanted in the tibia of a New Zealand white rabbit that total 20 of them were used. In order to test the implant stability and implant-tissue interface contact changing in the bone bed, each 10 rabbit were sacrificed 1 week and 6 week later while resonance frequency and removal torque were measured. One-way analysis of variance and the Tukey test were used for statistical analysis. Results : The results were as follows. 1. There was no statistically significant difference of implant stability quotients(ISQ) value in RFA between individual groups after 1 week of implantation and 6 weeks(p>0.05). But, there was statistically significant increase of ISQ value in 6 weeks group compared to 1 week group(p<0.05). 2. There was no statistically significant difference in removal torque analysis between individual groups after 1 week of implantation and 6 weeks(p>0.05). but there was statistically significant increase in all 4 groups after 6 weeks compared to 1 week later(p<0.05). 3. There was no statistically significant difference in removal torque analysis between anodized group and HA coating after anodic oxidation 6 weeks later(p>0.05), but significant difference was appeared in both groups compared to RBM group and smooth-machined group(p<0.05). Conclusions : It can be suggested that changes in surface characteristics affect bone reactions. Anodized and anodized+hydroxyapatite sol-gel coating showed significantly improved bone tissue response to implants, but further study on the effect of hydroxyapatite dissolution is needed.

Biological Effects of Different Thin Layer Hydroxyapatite Coatings on Anodized Titanium

  • Sohn, Sung-Hwa;Jun, Hye-Kyoung;Kim, Chang-Su;Kim, Ki-Nam;Ryu, Yeon-Mi;Lee, Seung-Ho;Kim, Yu-Ri;Seo, Sang-Hui;Kim, Hye-Won;Shin, Sang-Wan;Ryu, Jae-Jun;Kim, Meyoung-Kon
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.4
    • /
    • pp.237-247
    • /
    • 2005
  • Several features of the implant surface, such as roughness, topography, and composition play a relevant role in implant integration with bone. This study was conducted in order to determine the effects of various thin layer hydroxyapatite (HA) coatings on anodized Ti surfaces on the biological responses of a human osteoblast-like cell line (MG63). MG63 cells were cultured on A (100 nm HA coating on anodized surface), B (500-700 nm HA coating on anodized surface), C ($1{\mu}m$ HA coating on anodized surface), and control (non HA coating on anodized surface) Ti. The morphology of these cells was assessed by SEM. The cDNAs prepared from the total RNAs of the MG63 were hybridized into a human cDNA microarray (1,152 elements). The appearances of the surfaces observed by SEM were different on each of the four dental substrate types. MG63 cells cultured on A, C and control exhibited cell-matrix interactions. It was B surface showing cell-cell interaction. In the expression of several genes were up-, and down-regulated on the different surfaces. The attachment and expression of key osteogenic regulatory genes were enhanced by the surface morphology of the dental materials used.