• 제목/요약/키워드: Anodized Surface Treatment

검색결과 72건 처리시간 0.024초

Enhanced compatibility and initial stability of Ti6Al4V alloy orthodontic miniscrews subjected to anodization, cyclic precalcification, and heat treatment

  • Oh, Eun-Ju;Nguyen, Thuy-Duong T.;Lee, Seung-Youp;Jeon, Young-Mi;Bae, Tae-Sung;Kim, Jong-Gee
    • 대한치과교정학회지
    • /
    • 제44권5호
    • /
    • pp.246-253
    • /
    • 2014
  • Objective: To evaluate the bioactivity, and the biomechanical and bone-regenerative properties of Ti6Al4V miniscrews subjected to anodization, cyclic precalcification, and heat treatment (APH treatment) and their potential clinical use. Methods: The surfaces of Ti6Al4V alloys were modified by APH treatment. Bioactivity was assessed after immersion in simulated body fluid for 3 days. The hydrophilicity and the roughness of APH-treated surfaces were compared with those of untreated (UT) and anodized and heat-treated (AH) samples. For in vivo tests, 32 miniscrews (16 UT and 16 APH) were inserted into 16 Wistar rats, one UT and one APH-treated miniscrew in either tibia. The miniscrews were extracted after 3 and 6 weeks and their osseointegration (n = 8 for each time point and group) was investigated by surface and histological analyses and removal torque measurements. Results: APH treatment formed a dense surface array of nanotubular TiO2 layer covered with a compact apatite-like film. APH-treated samples showed better bioactivity and biocompatibility compared with UT and AH samples. In vivo, APH-treated miniscrews showed higher removal torque and bone-to-implant contact than did UT miniscrews, after both 3 and 6 weeks (p < 0.05). Also, early deposition of densely mineralized bone around APH-treated miniscrews was observed, implying good bonding to the treated surface. Conclusions: APH treatment enhanced the bioactivity, and the biomechanical and bone regenerative properties of the Ti6Al4V alloy miniscrews. The enhanced initial stability afforded should be valuable in orthodontic applications.

테플론 코팅과 오일 담지를 이용한 알루미늄 양극산화피막의 응축 열전달 향상 (Enhancement of Condensation Heat Transfer of Anodized Aluminum by Teflon Coating and Oil-Impregnation)

  • 강민주;이종훈;차수진;신예지;김동현;김경자;이정훈
    • 한국표면공학회지
    • /
    • 제54권2호
    • /
    • pp.90-95
    • /
    • 2021
  • Surface modification technique enabling the control of condensation provides various benefit in various engineering systems, such as heat transfer, desalination, power plants, and so on. In this study, lubricant oil-impregnation into Teflon-coated nanoporous anodic oxide layer of aluminum to enhance a de-wetting and mobility of water droplet on surface. Due to the surface treatment improving water-repellency, the condensation mode is changed to dropwise, thus the frequency of sliding condensed water droplet on surface is increased. For these reasons, the surface of oil-impregnated Teflon-coated nanoporous anodic aluminum oxide shows significantly enhanced condensation heat transfer compared to bare aluminum surface. In addition, the porosity of anodic aluminum oxide affected the mobility of water droplet even with oil-impregnation and Teflon-coating, indicating that the optimization of porous structure of anodic oxide is required for maximizing the condensation heat transfer.

Comparion of stability in titanium implants with different surface topographies in dogs

  • Kim, Nam-Sook;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Park, Ha-Ok;Lim, Hyun-Pil
    • The Journal of Advanced Prosthodontics
    • /
    • 제1권1호
    • /
    • pp.47-55
    • /
    • 2009
  • STATEMENT OF PROBLEM. A few of studies which compared and continuously measured the stability of various surface treated implants in the same individual had been performed. PURPOSE. We aim to find the clinical significance of surface treatments by observing the differences in the stabilization stages of implant stability. MATERIAL AND METHODS. Eight different surface topographies of dental implants were especially designed for the present study. Machined surface implants were used as a control group. 4 nano-treated surface implants(20 nm $TiO_2$ coating surface, heat-treated 80 nm $TiO_2$ coating surface, CaP coating surface, heat treated CaP coating surface) and 3 micro-treated surface implants [resorbable blast media(RBM) surface, sandblast and acid-etched(SAE) surface, anodized RBM surface] were used as experiment groups. All 24 implants were placed in 3 adult dogs. $Periotest^{(R)}$ & ISQ values measured for 8 weeks and all animals were sacrificed at 8 weeks after surgery. Then the histological analyses were done. RESULTS. In PTV, all implants were stabilized except 1 failed implants. In ISQ values, The lowest stability was observed at different times for each individual. The ISQ values were showed increased tendency after 5 weeks in every groups. After 4 to 5 weeks, the values were stabilized. There was no statistical correlation between the ISQ values and PTV. In the histological findings, the bone formation was observed to be adequate in general and no differences among the 8 surface treated implants. CONCLUSIONS. In this study, the difference in the stability of the implants was determined not by the differences in the surface treatment but by the individual specificity.

NH4F가 첨가된 0.5 M 옥살산 전처리가 AZ91 마그네슘 합금의 PEO 피막 형성에 미치는 영향 (Effect of pre-treatment in 0.5 M oxalic acid containing various NH4F concentrations on PEO Film Formation of AZ91 Mg Alloy)

  • 권두영;송풍근;문성모
    • 한국표면공학회지
    • /
    • 제55권1호
    • /
    • pp.24-31
    • /
    • 2022
  • This study investigated the effect of pre-treatment on the PEO film formation of AZ91 Mg alloy. The pre-treatment was conducted for 10 min at room temperature in 0.5 M oxalic acid (C2H2O4) solution containing various ammonium fluoride (NH4F) concentrations. The pre-treated AZ91 Mg specimens were anodized at 100 mA/cm2 of 300 Hz AC for 2 min in 0.1 M NaOH + 0.4 M Na2SiO3 solution. When AZ91 Mg alloy was pretreated in 0.5 M oxalic acid with NH4F concentration less than 0.3 M, continuous dissolution of the AZ91 Mg alloy occurred together with the formation of black smuts and arc initiation time for PEO film formation was very late. It was noticed that corrosion rate of the AZ91 Mg alloy became faster if small amount of NH4F concentration, 0.1 M, is added. The fast corrosion is attributable to fast formation of porous fluoride together with porous oxides in the reaction products. On the other hand, when AZ91 Mg alloy was pretreated in 0.5 M oxalic acid with sufficient NH4F more than 0.3 M, a thin and dense protective film was formed on the AZ91 Mg alloy surface which resulted in faster initiation of arcs and formation of PEO film.

Biomechanical evaluation of dental implants with different surfaces: Removal torque and resonance frequency analysis in rabbits

  • Koh, Jung-Woo;Yang, Jae-Ho;Han, Jung-Suk;Lee, Jai-Bong;Kim, Sung-Hun
    • The Journal of Advanced Prosthodontics
    • /
    • 제1권2호
    • /
    • pp.107-112
    • /
    • 2009
  • STATEMENT OF PROBLEM. Macroscopic and especially microscopic properties of implant surfaces play a major role in the osseous healing of dental implants. Dental implants with modified surfaces have shown stronger osseointegration than implants which are only turned (machined). Advanced surface modification techniques such as anodic oxidation and Ca-P application have been developed to achieve faster and stronger bonding between the host bone and the implant. PURPOSE. The purpose of this study was to investigate the effect of surface treatment of titanium dental implant on implant stability after insertion using the rabbit tibia model. MATERIAL AND METHODS. Three test groups were prepared: sandblasted, large-grit and acid-etched (SLA) implants, anodic oxidized implants, and anodized implants with Ca-P immersion. The turned implants served as control. Twenty rabbits received 80 implants in the tibia. Resonance frequencies were measured at the time of implant insertion, 2 weeks and 4 weeks of healing. Removal torque values (RTV) were measured 2 and 4 weeks after insertion. RESULTS. The implant stability quotient (ISQ) values of implants for resonance frequency analysis (RFA) increased significantly (P <. 05) during 2 weeks of healing period although there were no significant differences among the test and control groups (P >. 05). The test and control implants also showed significantly higher ISQ values during 4 weeks of healing period (P < .05). No significant differences, however, were found among all the groups. All the groups showed no significant differences in ISQ values between 2 and 4 weeks after implant insertion (P >. 05). The SLA, anodized and Ca-P immersed implants showed higher RTVs at 2 and 4 weeks of healing than the machined one (P < .05). However, there was no significant difference among the experimental groups. CONCLUSION. The surface-modified implants appear to provide superior implant stability to the turned one. Under the limitation of this study, however, we suggest that neither anodic oxidation nor Ca-P immersion techniques have any advantage over the conventional SLA technique with respect to implant stability.

수명을 향상시키기 위해 Al 메탈 코팅과 양극산화처리된 Steel 도가니의 파괴 거동 (Fracture Behavior of Fe Crucible in Molten Aluminum Coated with Al and Anodized Al)

  • 차태민;신병현;황명원;김도형;정원섭
    • 한국표면공학회지
    • /
    • 제51권1호
    • /
    • pp.34-39
    • /
    • 2018
  • Steel crucible used for molten Al has a problem of very limited lifetime because of the interaction between Fe and molten Al. This study was performed to improve the lifetime of steel crucible for molten Al by coating metallic Al and by further anodizing treatment to form thick and uniform anodic oxide films. The lifetime of the steel crucible was improved slightly by Al coating from 30 to 40 hours by metallic Al coating and largely to 120 hours by coating the surface with anodic oxide film. The improved lifetime was attributed to blocking of the reaction between Fe and molten Al with the help of anodic oxide layer with more than 20 um thickness on the crucible surface. The failure of the steel crucible arises from the formation of intermetallic compounds and pores at the steel/Al interface.

Template 방법을 이용한 Hybrid Supercapacitor 전극용 알루미늄 분말 디스크 제조와 에칭 조건 연구 (Fabrication of Aluminum Powder Disk by a Template Method and Its Etching Condition for an Electrode of Hybrid Supercapacitor)

  • 진창수;이용성;신경희;김종휘;윤수길
    • 전기화학회지
    • /
    • 제6권2호
    • /
    • pp.145-152
    • /
    • 2003
  • 전해 캐패시터와 supercapacitor의 특성을 함께 가지는 하이브리드 캐패시터의 용량은 표면이 산화물로 피복된 양극에 의해서 좌우된다 본 연구에서는 고전압 하이브리드 슈퍼캐패시터의 제조를 위해 양극의 용량 최적화를 수행하였다. $40{\mu}m$의 입자경을 갖는 알루미늄 분말과 NaCl분말을 4:1의 무게비로 혼합하여 디스크 형태의 전극을 만들고 열처리를 하였다. 열처리 후 $50^{\circ}C$의 증류수에서 NaCl을 용해시켜 열처리 온도에 따른 용량과 저항을 비교하였다. 최적의 열처리 과정을 거친 후 electropolishing 및 화학처리, 1차 및 2차 에칭을 단계별로 행하였고 각각의 단계에서 최적의 조건을 조사하였다 각각의 단계에서의 용량과 저항은 ac impedance analyzer를 사용하여 측정하였으며 전극의 표면은 SEM을 이용하여 관찰하였다. 2차 에칭 후 내전압이 300V급인 전극으로 만들기 위하여 365V로 양극산화 시켰으며, 산화된 알루미늄 디스크 전극을 사용하여 단위 셀을 제조하여 주파수에 따른 용량과 저항 특성을 기존의 300V급 알루미늄 전해 캐패시터와 비교하였다.

Implant surface treatments affect gene expression of Runx2, osteogenic key marker

  • Na, Young;Heo, Seong-Joo;Kim, Seong-Kyun;Koak, Jai-Young
    • The Journal of Advanced Prosthodontics
    • /
    • 제1권2호
    • /
    • pp.91-96
    • /
    • 2009
  • STATEMENT OF PROBLEM. The aim of this study was to study the effects of various surface treatments to a titanium surface on the expression of Runx2 in vitro. MATERIAL AND METHODS. Human Osteosarcoma TE-85 cells were cultured on machined, sandblasted, or anodic oxidized cpTi discs. At various times of incubation, the cells were collected and then processed for the analysis of mRNA expression of Runx2 using reverse transcription-PCR. RESULTS. The expression pattern of Runx2 mRNA was differed according to the types of surface treatment. When the cells were cultured on the untreated control culture plates, the gene expression of Runx2 was not increased during the experiments. In the case of that the cells were cultured on the machined cpTI discs, the expression level was intermediate at the first day, but increased constitutively to day 5. In cells on sandblasted cpTi discs, the expression level was highest in the first day sample and the level was maintained to 5 days. In cells on anodized cpTi discs, the expression level increased rapidly to 3 days, but decreased slightly in the 5-th day sample. CONCLUSION. Different surface treatments may contribute to the regulation of osteoblast function by influencing the level of gene expression of key osteogenic factors.

치과용 임플란트 적용을 위한 항균력을 가진 티타늄 표면의 평가 (An Evaluation of Antibacterial Titanium Surface For Dental Implant)

  • 강민경;문승균;김경남
    • 치위생과학회지
    • /
    • 제11권5호
    • /
    • pp.405-410
    • /
    • 2011
  • 본 연구의 목적은 표면 거칠기를 증가시키기 위하여 알루미나와 하이드록시아파타이트를 이용하여 각각 블라스팅 처리한 뒤 염화나트륨을 전해액 내에 섞어 양극산화 방법을 이용하여 염소가 함유된 표면을 만들고 항균력을 평가하는데 있다. 그리고 표면 특성과 항균력을 평가하여 다음과 같은 결과를 얻었다. 1. SEM 표면 관찰에서는 블라스팅 처리 후 양극산화한 결과 실험군 2와 3에서 연마처리한 실험군 1에 비해 거친 요철구조를 관찰할 수 있었다. 2. EDS 조성분석 결과 실험군 2에서는 칼슘, 인, 염소 성분과 더불어 알루미늄이 관찰된 반면, 실험군 3에서는 칼슘, 인과 염소 성분만을 관찰할 수 있었다. 3. 표면 거칠기 분석 결과 평균 표면 거칠기의 값이 실험군 2, 실험군 3, 실험군 1순으로 작았으며, 실험군 2와 3 간에는 유의한 차이가 없었다(p>0.05). 4. 항균력 평가 결과 실험군 2가 가장 적은 세균수를 보여 우수한 항균력을 보였으나 이는 실험군 3과 유의한 차이가 없었다(p>0.05). 알루미나와 하이드록시아파타이트를 이용하여 각각 블라스팅 처리한 뒤 염화나트륨을 전해액 내에 섞어 양극산화 방법을 이용하여 염소가 함유된 표면을 만들 수 있었으며, 그 결과 연마처리한 시편에 비해 높은 표면 거칠기와 우수한 항균력을 보였다. 그러나 그 재료의 효과와 안정성을 입증하기 위해서는 추가적인 in vitro와 in vivo 실험이 수행되어야겠다.

알루미늄 양극산호를 이용한 다공성 견막 제조에 관한 연구 (A Study on the manufacturing of porous membrane by the aluminum anodizing)

  • 윤재환;강탁
    • 한국표면공학회지
    • /
    • 제13권4호
    • /
    • pp.221-227
    • /
    • 1980
  • When anodizing the Al in the acid electrolyte, it is well known that the parallel pores grow continuously perpendicular to the surface. This fact can be used for the manufacturing of the porous membrane, if thc pores pass through the anodized foil. Anodizing both surfaces of the Al-foil spontaneously in 20$^{\circ}C$, 2% oxalic acid under tile potentiostatic condition, it is found that the harrier layer remaining in the midst of the foil finally disappears and thc pores pass through the foil. And examined the porous structure change when the voltage is changed during the anodizing treatment. From the result, it is revealed that the new pores and cell grow, adjusting themselves to the final voltage. The characteristic of the porous membrane is greatly dependent upon the diameter of the pore and the cell. So studied the relationship between the voltage and the diameter of the pore and the cell quantitatively with the aid of field-assisted dissolution concept. And derived the following two equation, Pi = 8.32Vi, Ci = 26.80Vi. These equations are in good accord with the experimental data above 30V, but do not accord nuder 30V.

  • PDF