• Title/Summary/Keyword: Anodic reaction

Search Result 166, Processing Time 0.026 seconds

Corrosion Resistance Evaluation of Aluminum Thermal Spray Coated AA5083-H321 (알루미늄 열용사 코팅된 AA5083-H321의 내식성 평가)

  • Il-Cho Park;Sungjun Kim;Min-Su Han
    • Corrosion Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.108-114
    • /
    • 2023
  • In this study, anti-corrosion effect was investigated through various electrochemical experiments after applying Al thermal spraying technology to AA5083-H321. Open circuit potential and anodic polarization curves were analyzed through electrochemical experiments in natural seawater. The shape of the surface was observed using a scanning electron microscope (SEM) and a 3D microscope before and after the experiment. Component and crystal structure were analyzed through EDS and XRD. As a result, the surface roughness of AA5083-H321 and the Al thermal sprayed coating layer increased due to surface damage caused by anodic dissolution reaction during the anodic polarization experiment. The corrosion rate of AA5083-H321 was relatively low because the Al thermal spray coating layer contained structural defects such as pores and crevices. Nevertheless, the open circuit potential of the Al thermal spray coating layer in natural seawater was measured about 0.2 V lower than that of AA5083-H321. Thus, a sacrificial anode protection effect can be expected.

Study on Electrochemical Properties of TBT(Tributyltin)

  • Park, Chil-Nam;Yang, Hyo-Kyung
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_4
    • /
    • pp.173-179
    • /
    • 2001
  • The chemical behavior and properties of the redox state of environmental pollutants was investigated using electrochemical methods. The purpose was to measure the variations in the redox reaction of differential pulse polarograms and cyclic voltammograms. The results observed the influences on redox potential and current of various factors including concentration, temperature, salt, and pH. These were established factors as the effect of the redox reaction. It can be clearly recognized that the electrode reaction are from reversible to irreversible processes. Also, it was mixing with reaction current controlled.

  • PDF

Chemical Properties of Co(II) Compound Containing Endocrine Disrupter, Bis-Phenol A

  • Park, Chil-Nam
    • Journal of Environmental Science International
    • /
    • v.11 no.2
    • /
    • pp.131-137
    • /
    • 2002
  • The chemical behavior and properties on the redox state of environmental pollutant has been investigated by electrochemical methods. We carried out to measure the variations in the redox reaction of differential pulse polarogram and cyclic voltammogram. The results observed the influences on redox potential and current of various factors with temperature and pH. These were established factors as the effect of the redox reaction. It can be clearly recognized that the electrode reaction are from qusi-reversible to irreversible processes. Also, it was mixing with reaction current controlled. The bits-phenol A in the waste water was made to compound with cobalt ion and it take away from the separation into compound. The $Co(BPA)_2$ compound was not found to be dissociation in waste water. However, this compound is avery unstable(K=1.02) and for a while, it was to be a dissociation. Therefore, we believed that it was likely to a toxic substance.

Electrodeposition of Conducting Polymers on Copper in Nonaqueous Media by Corrosion Inhibition

  • Lee, Seonha;Lee, Hochun
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.85-89
    • /
    • 2012
  • This study demonstrates the direct anodic electrodeposition of polypyrrole (PPy), poly(3,4-ethyl-enedioxythiophene) (PEDOT), and polythiophene (PTh) on Cu electrodes by employing a corrosion inhibitor, succinonitrile (SN). SN was found to suppress anodic Cu dissolution beyond the oxidation potential of the polymer monomers. It is also revealed that the Cu surface passivated by SN is still adequately conductive to allow the redox reaction of 1,4-difluoro-2,5-dimethoxybenzene (FMB) and the oxidation of the polymer monomers. Through both cyclic voltammetry and galvanostatic techniques, PPy, PEDOT, and PTh films were successfully synthesized on Cu electrodes in the presence of SN, and the redox behaviors of the films were evaluated.

Electronic Properties of the Oxide Film and Anodic Oxidation Mechanism of Iron in Borate Buffer Solution (Borate 완충용액에서 철의 산화 반응구조와 산화피막의 전기적 특성)

  • Kim, Hyun-Chul;Kim, Youn-Kyoo
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.5
    • /
    • pp.542-547
    • /
    • 2012
  • We have investigated the electronic properties of the oxide film and anodic oxidation mechanism. Iron was oxidized by two reaction pathways depending on pH. The oxide film has showed the electronic properties of n-type semiconductor based on the Mott-Schottky equation.

Effect of anodic potentials for fabricating co-doped TiO2 on the photocatalytic activity

  • Lee, Seunghyun;Han, Jae Ho;Oh, Han-Jun;Chi, Choong-Soo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.295-295
    • /
    • 2012
  • The $TiO_2$ films were prepared in the $H_2SO_4$ solution containing $NH_4F$ at different anodic voltages, to compare the photocatalytic performances of titania for purification of waste water. The microstructure was characterized by a Field-emission scanning electron microscopy (FE-SEM) and X-ray diffractometry (XRD). Chemical bonding states and co-doped elements of F and N were analyzed using surface X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of the co-doped $TiO_2$ films was analyzed by the degradation of aniline blue solution. From the result of diffuse reflectance absorption spectroscopy(DRS), it is indicated that the absorption edge of the F-N-codoped $TiO_2$ films shifted toward visible light area, and the photocatalytic reaction of $TiO_2$ was improved by doping an appropriate contents of F and N.

  • PDF

Electrochemical Determination of As(III) at Nanoporous Gold Electrodes with Controlled Surface Area

  • Seo, Min Ji;Kastro, Kanido Camerun;Kim, Jongwon
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.1
    • /
    • pp.45-50
    • /
    • 2019
  • Because arsenic (As) is a chemical substance toxic to humans, there have been extensive investigations on the development of As detection methods. In this study, the electrochemical determination of As on nanoporous gold (NPG) electrodes was investigated using anodic stripping voltammetry. The electrochemical surface area of the NPG electrodes was controlled by changing the reaction times during the anodization of Au for NPG preparation, and its effect on the electrochemical behavior during As detection was examined. The detection efficiency of the NPG electrodes improved as the roughness factor of the NPG electrodes increased up to around 100. A further increase in the surface area of the NPG electrodes resulted in a decrease of the detection efficiency due to high background current levels. The most efficient As detection efficiency was obtained on the NPG electrodes prepared with an anodization time of 50 s. The effects of the detection parameters and of the Cu interference in As detection were investigated and the NPG electrode was compared to flat Au electrodes.

Electrochemical Anodic Formation of VO2 Nanotubes and Hydrogen Sorption Property

  • Lee, Hyeonkwon;Jung, Minji;Oh, Hyunchul;Lee, Kiyoung
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.212-216
    • /
    • 2021
  • We investigated the feasibility of hydrogen storage with electrochemically formed VO2 nanotubes. The VO2 nanotubes were fabricated through the anodization of vanadium metal in fluoride ion-containing organic electrolyte followed by an annealing process in an Ar-saturated atmosphere at 673 K for 3 h at a heating rate of 3 K /min. During anodization, the current density significantly increased up to 7.93 mA/cm2 for approximately 500 s owing to heat generation, which led to a fast-electrochemical etching reaction of the outermost part of the nanotubes. By controlling the anodization temperature, highly ordered VO2 nanotubes were grown on the metal substrate without using any binders or adhesives. Furthermore, we demonstrated the hydrogen sorption properties of the anodic VO2 nanotubes.

Preparation of Inorganic Ultrafiltration Membrane by Anodic Oxidation in Oxalic Acid (수산전해액하에서 양극산화에 의한 무기 UF막의 제조)

  • Lee, Chang-Woo;Hong, Young-Ho;Chang, Yoon-Ho;Hahm, Yeong-Min
    • Applied Chemistry for Engineering
    • /
    • v.9 no.4
    • /
    • pp.536-541
    • /
    • 1998
  • The porous size alumina membrane was prepared by anodic oxidation with current method in an aqueous solution of oxalic acid. The aluminum metal plate was pretreated with thermal oxidation, chemical polishing and electropolishing before anodic oxidation. Membrane thickness and pore size distribution were investigated with several anodizing conditions; reaction temperature, cumulative charge, electrolyte concentration and current density. The porous alumina membrane obtained was $55{\sim}75{\mu}m$ thick with straight micropore of 45~100nm. Also, the porous alumina membrane has an uniform pore diameter and pore distribution. It was inorganic ultrafiltration membrane as a kind of the ceramic membrane.

  • PDF

Studies on the anodic oxidation of some volatile organic halogen compounds(THM) (휘발성 할로겐 화합물(THM)의 양극 산화에 관한 연구)

  • Yoo, K.S.;Park, S.Y.;Yang, S.B.;Woo, S.B.
    • Analytical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.264-273
    • /
    • 1997
  • Anodic oxidation reaction was applied to remove trihalomethanes in an aqueous solution. Each component was determined by using solid phase microextraction(SPME) fiber and GC-ECD. Anodic and cathodic compartments were separated in order to protect contaminants and connected by $KNO_3$-agar bridge. The calibration graphs of the 6 THM components were shown good linearlity from a few ppb up to a few hundreds ppb concentration level. Anodes such as platinum(Pt), titanium(Ti). zircornium(Zr), titanium metal coated with iridium(Ti-Ir), and glassy carbon coated with mixed valence ruthenium(mv Ru) were tried to remove the THMs at different potentials. The best result was obtained on the Ti-Ir anode applied 9 volts DC. The electrode could effectively remove almost all the THM components from the stirring solution within about 1.5 hours. The glassy carbon electrode coated with mixed valence ruthenium showed excellent removing effect at the begining, but the maximum removing level was remained at 60% probably due to the destruction of the electrode surface. The concentration of chloroform, however, tends to be increased due to the electrode reaction producing the component at the condition.

  • PDF