• Title/Summary/Keyword: Anodic Oxide Film

Search Result 176, Processing Time 0.023 seconds

Novel Methods for Measuring the Surface Hardness of Anodic Oxide Films on Aluminum Alloy (알루미늄 합금 양극산화피막의 표면경도 측정법)

  • Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.1
    • /
    • pp.36-42
    • /
    • 2020
  • In this study, two novel methods to measure the surface hardness of anodic oxide films on aluminum alloys are reported. The first method is to impregnate oil-based ink into pores in the anodic oxide film and then to clean the ink on the surface using ethanol, resulting in an impregnation of inks only inside of the pores in anodic oxide film. The second method is to coat the anodic oxide film surface with thin Au layer less than 0.1 ?. Both the ink-impregnating method and Au-coating method provided clear indentation marks on the anodic oxide film surface when it was indented using a pyramidal-diamond penetrator. Thus, Vickers hardness of anodic oxide films on aluminium alloy could be measured successfully and precisely from the anodic film surface. In addition, advantages and disadvantages of the ink-impregnating method and Au-coating method for the measurement of surface hardness of anodic oxide films are discussed.

Preparation of Tantalum Anodic Oxide Film in Citric Acid Solution - Evidence and Effects of Citrate Anion Incorporation

  • Kim, Young-Ho;Uosaki, Kohei
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.163-170
    • /
    • 2013
  • Tantalum anodic oxide film was prepared in citric acid solution of various concentrations and the prepared Ta anodic oxide film was characterized by various electrochemical techniques and X-ray photoelectron spectroscopy (XPS). The prepared Ta anodic oxide film showed typical n-type semiconducting properties and the dielectric properties were strongly dependent on the citric acid concentration. The variation of electrochemical and electronic properties was explained in terms of electrolyte anion incorporation into the anodic oxide film, which was supported by XPS measurements.

Anodic Oxidation Treatment Methods of Metals (금속의 양극산화처리 기술)

  • Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • Anodic oxidation treatment of metals is one of typical surface finishing methods which has been used for improving surface appearance, bioactivity, adhesion with paints and the resistances to corrosion and/or abrasion. This article provides fundamental principle, type and characteristics of the anodic oxidation treatment methods, including anodizing method and plasma electrolytic oxidation (PEO) method. The anodic oxidation can form thick oxide films on the metal surface by electrochemical reactions under the application of electric current and voltage between the working electrode and auxiliary electrode. The anodic oxide films are classified into two types of barrier type and porous type. The porous anodic oxide films include a porous anodizing film containing regular pores, nanotubes and PEO films containing irregular pores with different sizes and shapes. Thickness and defect density of the anodic oxide films are important factors which affect the corrosion resistance of metals. The anodic oxide film thickness is limited by how fast ions can migrate through the anodic oxide film. Defect density in the anodic oxide film is dependent upon alloying elements and second-phase particles in the alloys. In this article, the principle and mechanisms of formation and growth of anodic oxide films on metals are described.

A Study on the Infrared Radiation Properties of Anodized Aluminum (양극산화된 알루미늄의 적외선 복사특성 연구)

  • 강병철;최정진;김기호
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.3
    • /
    • pp.149-157
    • /
    • 2002
  • Spectral emissivity depends on the surface conditions of the materials. The mechanisms that affect the spectral emissivity in anodic oxide films on aluminum were investigated. The aluminum specimens were anodized in a sulfuric acid solution and the thickness of the resulting oxide film formed changed with the anodizing time. FT-IR spectrum analysis identified the anodic oxide film as boehmite ($Al_2$$O_3$.$H_2$O). Both the infrared emisivity and reflectivity of the anodized aluminum were affected by the structure of the anodic oxide film because Al-OH and Al-O-Al have a pronounced absorption band in the infrared region of the spectrum. The presence of an anodic oxide film on aluminum caused a rapid drop in the infrared reflectivity. An aluminum surface in the clean state had an emissivity of approximately 0.2. However, the infrared emissivity rapidly increased to 0.91 as the thickness of the anodic oxide film increased.

Surface Hardness Measurement of Anodic Oxide Films on AA2024 based an Ink-Impregnation Method

  • Moon, Sungmo;Rha, Jong-joo
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.2
    • /
    • pp.80-86
    • /
    • 2020
  • This paper is concerned with type of imperfections present within the anodic oxide films on AA2024 and surface hardness of the anodic film measured after ink-impregnation. The anodic oxide films were formed for 25 min at 40 mA/㎠ and 15±0.5℃ and 300 rpm of magnet stirring rate in 20% sulfuric acid solution. The ink-impregnation allows clear observations of not only the imperfections within the anodic oxide films but also an indentation mark on the oxide film surface made by a pyramidal-diamond penetrator for the hardness measurement. There were observed four different regions in the anodic oxide films on AA2024 and the surface hardness of the anodic oxide films appeared to be crucially dependent on the type of defects, showing 60~100 Hv on the oxide surface region I with large size black defect, 100~140 Hv on the oxide surface region II with large size grey defect, 140~170 Hv on the oxide surface region III with mall size black and/or grey defects and 170~190 Hv on the oxide surface region IV without defects. The pyramidal indentation marks were observed to be distorted in the regions with a large size black and grey defects, while no distortion of the indentation mark was observed in the regions with small size defects and without visible defects.

Hard Anodizing Treatment in Malic Acid Bath mixed with Oxalic Acid (말릭산과 수산혼합욕에서 경질양극 산화처리)

  • Jeong, Yong-Soo;Chang, Do-Yon;Kwon, Sik-Chol
    • Journal of the Korean institute of surface engineering
    • /
    • v.17 no.3
    • /
    • pp.78-86
    • /
    • 1984
  • Hard anodic oxide film was investigated formed on pure aluminium with various temperature (30$^{\circ}-60^{\circ}C$), current densities (1.5-3.0A/$dm^2$) and concentrations(3-15g/l) of oxalic acid in 0.5M malic acid bath. The resulting characteristic of the anodic oxide film obtained were summarized as follows in the view point of physical and mechanical properties in relation with the above process variables. 1. The film thickness increased with oxalic acid concentration and bath temperature, while the reversed phenomena were obtained at a high concentration of oxalic acid and high temperature due to the severe dissolution of the anodic oxide film. 2. The hardness and the abrasion resistance were improved by lowering the addition of oxalic acid and the bath temperature. This feature was directly dependent on the porosity formed on the anodic oxide film. 3. The maximum hardness of anodic oxide film showed Hv 579 in the temperature of 30$^{\circ}C$ with the current density, 2.5A/$dm^2$ in the 0.5M malic acid bath mixed with 5g/l oxalic acid.

  • PDF

Electrocoloring during Anodic Oxidation of 6063 Aluminium Alloy (알루미늄 양극산화 피막의 전해착색에 관한 연구)

  • 정순오;한성호;백영현
    • Journal of the Korean institute of surface engineering
    • /
    • v.33 no.5
    • /
    • pp.309-318
    • /
    • 2000
  • The 6063 Aluminium alloy were electrocolored and anodized at the same time in addition of $CoSO_4$, $FeSO_4$, in the electrolyte and investigated by AES/SAM. It was found that the thickness of anodic oxide film is increased linearly in DC type, and DC combined AC type, the more ratio of anodic Portion in AC, the more increased of anodic film thickness. The color of anodic film was changed from silver to yellow when the increase of the ratio of cathodic portion in AC. Also the increase of $CoSO_4$, $FeSO_4$ in the electrolyte, the coloring time is decreased. From the AES/SAM results, the element of anodic oxide film are Al,O and S. The result of depth profile, the most of the S distributed on the surface and the more S is in DC combined AC type than only DC type.

  • PDF

Electrochemical Studies on the Mechanism of the Fabrication of Ceramic Films by Hydrothermal-Electrochemical Technique

  • Zhibin Wu;Masahiro Yoshimura
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.8
    • /
    • pp.869-874
    • /
    • 1999
  • In this paper, electrochemical techniques are used to investigate hydrothermal-electrochemically formation of barium titanate (BT) ceramic films. For comparison, the electrochemical behaviors of anodic titanium oxide films formed in alkaline solution were also investigated both at room temperature and in hydrothermal condition at 150.0 ℃. Film structure and morphology were identified by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Titanium oxide films produced at different potentials exhibit different film morphology. The breakdown of titanium oxide films anodic growth on Ti electrode plays an important roles in the formation of BT films. BT films can grow on anodic oxide/metal substrate interface by short-circuit path, and the dissolution-precipitation processes on the ceramic film/solution interface control the film structure and morphology. Based upon the current experimental results and our previous work, extensively schematic proce-dures are proposed to model the mechanism of ceramic film formation by hydrothermal-electrochemical method.

Fabrication of Nano-Channeled Tin Oxide Film Electrode and Evaluation of Its Electrochemical Properties (나노 채널 구조를 가진 산화 주석 박막 전극 제조 및 전기화학적 특성 평가)

  • Park, Su-Jin;Shin, Heon-Cheol
    • Korean Journal of Materials Research
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • Thin film electrode consisting purely of porous anodic tin oxide with well-defined nano-channeled structure was fabricated for the first time and its electrochemical properties were investigated for application to an anode in a rechargeable lithium battery. To prepare the thin film electrode, first, a bi-layer of porous anodic tin oxides with well-defined nano-channels and discrete nano-channels with lots of lateral micro-cracks was prepared by pulsed and continuous anodization processes, respectively. Subsequent to the Cu coating on the layer, well-defined nano-channeled tin oxide was mechanically separated from the specimen, leading to an electrode comprised of porous tin oxide and a Cu current collector. The porous tin oxide nearly maintained its initial nano-structured character in spite of there being a series of fabrication steps. The resulting tin oxide film electrode reacted reversibly with lithium as an anode in a rechargeable lithium battery. Moreover, the tin oxide showed far more enhanced cycling stability than that of powders obtained from anodic tin oxides, strongly indicating that this thin film electrode is mechanically more stable against cycling-induced internal stress. In spite of the enhanced cycling stability, however, the reduction in the initial irreversible capacity and additional improvement of cycling stability are still needed to allow for practical use.

Formation Behavior of Anodic Oxide Films on Al7075 Alloy in Sulfuric Acid Solution (황산용액에서 Al7075 합금 표면의 양극산화피막 형성거동)

  • Moon, Sungmo;Yang, Cheolnam;Na, Sangjo
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.4
    • /
    • pp.155-161
    • /
    • 2014
  • The present work is concerned with the formation behavior of anodic oxide films on Al7075 alloy under a galvanostatic condition in 20 vol.% sulfuric acid solution. The formation behaviour of anodic oxide films was studied by the analyses of voltage-time curves and observations of colors, morphologies and thicknesses of anodic films with anodization time. Hardness of the anodic oxide films was also measured with anodization time and at different positions in the anodic films. Six different stages were observed with anodiziation time : barrier layer formation (stage I), pore formation (stage II), growth of porous films (stage III), abnormal rapid oxide growth (stage IV), growth of non-uniform oxide films (stage V) and breakdown of the thick oxide films under high anodic voltages (stage VI). Hardness of the anodic oxide films appeared to decrease with increasing anodization time and with the position towards the outer surface. This work provides useful information about the thickness, uniformity, imperfections and hardness distribution of the anodic oxide films formed on Al7075 alloy in sulfuric acid solution.