• Title/Summary/Keyword: Anodic Dissolution

Search Result 96, Processing Time 0.028 seconds

Anodic Dissolution of Electrodeposited Iron Group Elements in Phthalate Buffer Solution (Phthalate 완충용액에서 전해 석출한 철족 원소의 산화 용해 반응)

  • Chon, Jung-Kyoon;Kim, Youn-Kyoo
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.1
    • /
    • pp.14-20
    • /
    • 2007
  • The anodic dissolution of electrodeposited iron group elements (Fe, Co, Ni) were studied in phthalate buffer solution. The pH dependence of the corrosion potential, the corrosion current and Tafel slope was measured for each element. Based on the electrochemical parameters including Tafel slopes, we proposed the redox mechanism of the corrosion and the passivation. The adsorption of various phthalate species on the electrodeposited iron group elements seemed to be affected the corrosion mechanisms.

Effect of Cd Addition on the SCC Properties of Al-Cu-Mn Cast Alloys (Al-Cu-Mn주조합금의 SCC특성에 미치는 Cd첨가의 영향)

  • Lee, Chan-Hui;Kim, Gyeong-Hyeon;Kim, In-Bae
    • Korean Journal of Materials Research
    • /
    • v.11 no.4
    • /
    • pp.266-271
    • /
    • 2001
  • Effect of Cd addition on the stress corrosion cracking(SCC) resistance of Al-Cu-Mn cast alloy was investigated by C-ring test and electrical conductivity measurement. With increasing Cd contents, the electrical conductivity and the SCC resistance were increased. The PFZ and coarse precipitates along the grain boundary were observed from TEM micrographs. The fracture made of the alloys was confirmed as intergranular type and showed brittle fracture surface. As a result, it was concluded that the SCC mechanism of these alloys is the anodic dissolution model. The maximum hardness was increased from 127Hv in the Cd-free alloy to 138∼145Hv in the Cd addition alloys.

  • PDF

Comparison with Polarization Characteristic of Polymers

  • Choi, Chil-Nam;Yabg, Hyo-Kyung
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2001.11a
    • /
    • pp.188-190
    • /
    • 2001
  • We carried out to measure the variations of potential with current density polymers. The results were particularly examined to identify the influences on corrosion potential and corrosion rate of various factors including temperature and pH. The Tafel slope for anodic dissolution was determined by the polarization effect depending on these conditions. The optimum conditions were established for each case. The second anodic current density peak and maximum passive current density were designated as the relative corrosion sensitivity($I_{r}I_{f}$). The mass transfer coefficient value (${\alpha}$) was determined with the Tafel slope for anodic dissolution based on the polarization effect with optimum conditions.

  • PDF

Electrochemical Impedance Study for Selective Dissolution of a Cu-Zn Alloy

  • Hoshi, Y.;Tabei, K.;Shitanda, I.;Itagaki, M.
    • Corrosion Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.311-313
    • /
    • 2016
  • The anodic dissolution behavior of copper and brass in an electrolyte solution of 0.5M NaCl containing 0.5 mM $NaHCO_3$ was investigated by electrochemical impedance spectroscopy. The Nyquist plots of the copper impedance described a small loop in the high-frequency range and a large locus in the low-frequency range. Additionally, the features of the impedance spectrum of the brass were similar to those of the copper. This indicates that the copper-enriched layer formed on the brass surface due to the selective dissolution of the zinc from the surface. In addition, the rest potential and the anodic polarization curve for each sample were measured in order to discuss the selective dissolution of the zinc from the brass surface.

Effect of Stress Waveform on Corrosion Fatigue Crack Propagation in High Strength Steels-the Role of Anodic Dissolution Mechanism (고장력강의 부식피로균열전파에 미치는 하중파형의 영향과 양극용해기구의 역할)

  • 하회석;이성근
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.147-155
    • /
    • 1993
  • The effect of stress waveforms on corrosin fatigue and the role of dissolution mechanism in 3NilCr steel and 20Ni maraging steel have been investigated in aerated 3% NaCl solution and synthetic seawater under sinusoidal, triangular, square, positive sawtooth, negative sawtooth, and trapezoidal stress waveforms with open circuit at frequency of 1Hz and stress ratio of 0.1. The crack growth rates under square waveform were substantially lower than under sinusoidal and triangular waveforms, but the crack growth rates under sinusoidal waveform were slightly higher under triangular waveform. For a given frequency the growth rates under the positive sawtooth waveform are higher than those under the negative sawtooth waveform. The fatigue crack growth rates of most specimens were in good agreement with the values calculated by the model based on the dissoultion mechanism.

  • PDF

Polarization Characteristics of Polymers: Poly(vinylchloride), Poly(ethyleneterephthalate), Poly(propylene), and Poly(carbonate) (고분자물질들의 분극 특성: Poly(vinylchloride), Poly(ethyleneterephthalate), Poly(propylene), Poly(carbonate))

  • Choi, Chil-Nam;Yang, Hyo-Kyung
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.1
    • /
    • pp.19-25
    • /
    • 2002
  • We measured the variations of potentials and current densities for several polymers. The results were carefully examined to identify various factors such as temperature and pH to influence the potential and rate. The Tafel slope for anodic dissolution was determined by the polarization effect under these conditions. The optimum conditions were established for each case. The second anodic current density peak and maximum current density were designated as the relative polarization sensitivity $(I_r/I_f)$. The mass-transfer coefficient value $({\alpha})$ was determined by the Tafel slope for anodic dissolution on the basis of the polarization effect under optimum conditions.

Influence of Corrosion Potential and Current Density on Polarization Curve Variations using Polycarbonate[III]

  • Park, Chil-Nam;Yang, Hyo-Kyung;Kim, Sun-Kyu;Kim, Myung-Sun;Cheong, Kyung-Hoon
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.1
    • /
    • pp.43-50
    • /
    • 2000
  • In this study, experiments were carried out to measure the variations in the corrosion potential and current density of polarization curves using polycarbonate. The results were particularly examined to identify the influences affecting the corrosion potential including various conditions such as temperature, pH, catalytic enzyme, and salt. The lines representing the active anodic dissolution were only slightly shifted in the potential direction by temperature, pH, enzyme, and salt. The tafel slope for the anodic dissolution was determined based on the polarization effect with various conditions. The slope of the polarization curves describing the active-to-passive transition region were noticeably shifted in direction. Also, from the variation in the conditions, the optimum conditions were established for the most rapid transformation, including temperature, pH, corrosion rate, and resistance of corrosion potential. The second anodic current density peak and maximum passive current density were designated as the critical corrosion sensitivity(Ir/If). The value of Ir/If was then used in measuring the extent of the critical corrosion sensitivity of the polycarbonate. The potentiodynamic parameters of the corrosion were obtained using a Tafel plot.

  • PDF

Thickness Dependence of Size and Arrangement in Anodic TiO2 Nanotubes

  • Kim, Sun-Mi;Lee, Byung-Gun;Choi, Jin-Sub
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3730-3734
    • /
    • 2011
  • The degree of self-assembly and the size variation of nanotubular structures in anodic titanium oxide prepared by the anodization of titanium in ethylene glycol containing 0.25 wt % $NH_4F$ at 40 V were investigated as a function of anodization time. We found that the degree of self-assembly and the size of the nanotubes were strongly dependent on thickness deviation and thus indirectly on anodization time, as the thickness deviation was caused by the dissolution of the topmost tubular structures at local areas during long anodization. A large deviation in thickness led to a large deviation in the size and number of nanotubes per unit area. The dissolution primarily occurred at the bottoms of the nanotubes ($D_{bottom}$) in the initial stage of anodization (up to 6 h), which led to the growth of nanotubes. Dissolution at the tops ($D_{top}$) was accompanied by $D_{bottom}$ after the formed structures contacted the electrolyte after 12 h, generating the thickness deviation. After extremely long anodization (here, 70 h), $D_{top}$ was the dominant mode due to increase in pH, meaning that there was insufficient driving force to overcome the size distribution of nanotubes at the bottom. Thus, the nanotube array became disorder in this regime.

In-Situ Generation of Nanostructured Au Surfaces by Anodic Dissolution Followed by Cathodic Deposition (산화 용해에 연이은 환원 석출을 통한 나노구조 금 표면 형성)

  • Kweon, Suji;Choi, Suhee;Kim, Jongwon
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.3
    • /
    • pp.107-114
    • /
    • 2015
  • Electrochemical fabrication of nanostructured Au surfaces has received increased attention. In the present work, electrochemical modification of Au surfaces for fabricating nanostructured Au surfaces in the absence of externally added precursors is presented, which is different to the previous methods utilizing electrochemical deposition of externally added precursors. Application of anodic potential at Au surfaces in phosphate buffers containing $Br^-$ resulted in the anodic dissolution of Au, which produced Au precursors at the electrode surfaces. The resulting Au precursors were further reduced at the surface to produce nanostructured Au structures. The effects of applied potential and time on the morphology of Au nanostructures were systematically examined, from which a unique backbone type Au nanostructures was produced. The backbone type Au nanostructures exhibited high surface-enhanced Raman activity. The present work would give insights into the formation of electrochemical fabrication of nanostructured Au surfaces.

Effect of Chemical Passivation Treatment and Flow on the Corrosion of 304 Stainless Steel in Hydrochloric Acid Solution

  • Zhao, Jie;Cheng, Cong Qian;Cao, Tie Shan
    • Corrosion Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.273-279
    • /
    • 2015
  • Effects of passive film quality by chemical passivation and solution flow on the corrosion behavior of 304 stainless steel in HCl solution were investigated using a coloration indicator, and by corrosion weight loss, electrochemical polarization and element dissolution measurements. A high redness degree suggests a low passive-film integrity for 304 stainless steel following air exposure, while the minimum redness degree for the samples after chemical passivation suggests a high passive-film integrity. In the static condition, samples subjected to air exposure exhibited a high corrosion rate and preferential dissolution of Fe. Chemical passivation inhibited the corrosion rate due to the intrinsically high structural integrity of the passive film and high concentrations of Cr-rich oxides and hydroxide. Solution flow accelerated corrosion by promoting both the anodic dissolution reaction and the cathodic reaction. Solution flow also altered the preferential dissolution to fast uniform dissolution of metal elements.