• Title/Summary/Keyword: Anodic Aluminum Oxide

Search Result 212, Processing Time 0.024 seconds

Formation Characteristics of Hard Anodizing Films on 6xxx Aluminum Alloys (6xxx계 알루미늄 합금의 경질 아노다이징 피막 형성 특성 연구)

  • Moon, Sanghyuck;Moon, Sungmo;Lim, Sugun
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.4
    • /
    • pp.203-210
    • /
    • 2019
  • In this work, anodizing behavior of 6xxx series aluminum alloys was studied under constant current density and constant voltage conditions in 20% sulfuric acid solution by V-t curves, I-t curves, thickness measurement, observations of surface appearance and cross-sectional observation of anodizing films. The film growth rate of the anodizing films on Al6063, Al6061 and Al6082 obtained at 20 V were $0.63{\mu}m/min$. $0.46{\mu}m/min$ and $0.38{\mu}m/min$, respectively. Time to the initiation of imperfections at the oxide/substrate interface under constant current condition was shortened and colors of anodizing films became darker with the amount of alloying elements in 6xxx series aluminum alloys. Based upon the experimental results obtained in this work, it is concluded that maximum anodizing film thickness without interfacial defects is reduced with increasing amount of alloying elements and brighter anodizing films can be obtained by decreasing amount of alloying elements in the aluminum alloys.

Characteristics Comparison of Anodic Films Formed on Mg-Al Alloys by Non-chromate Surface Treatment

  • Kim, Seong-Jong;Jang, Seok-Ki;Kim, Jeong-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.300-308
    • /
    • 2004
  • The formation mechanism of anodic oxide films on Mg alloys when anodized in NaOH solution. was investigated by focusing on the effects of anodizing potential. Al content. and anodizing time. Pure Mg and Mg-Al alloys were anodized for 10 min at various potentials in NaOH solutions. $Mg(OH)_2$ was generated by an active dissolution reaction at the surface. and the product was affected by temperature. The intensity ratio of $Mg(OH)_2$ in the XRD analysis decreased with increasing applied potential. while that of MgO increased. The anti-corrosion properties of anodized specimens at each constant potential were better than those of non-anodized specimens. The specimen anodized at an applied potential of 3 V had the best anti-corrosion property. And the intensity ratio of $Mg_{17}Al_{12}$/Mg increased with aluminum content in Mg-Al alloys. During anodizing. the active dissolution reaction occurred preferentially in ${\beta}\;phase(Mg_{17}Al_{12})$ until about 4 mins. and then the current density increased radually until 7 mins. The dissolution reaction progressed in a phase(Mg) which not formed the intermetallic compound. which had a lower Al content. In the anodic polarization test of $0.017\;mol{\cdot}dm^-3$ NaCl and $0.1\;mol{\cdot}dm^-3\;Na_2SO_4$ at 298 K. the current density of Mg-15 mass% Al alloy anodized for 10 mins increased. since the anodic film that forms on the a phase is a non-compacted film. The anodic film on the phase for 30 mins was a compact film as compared with that for 10 mins.

Thin film process of anodic aluminum oxidation for optoelectronic nano-devices (나노 광소자 응용을 위한 알루미늄 양극산화박막 공정)

  • Choi, Jae-Ho;Baek, Ha-Bong;Kim, Keun-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.106-107
    • /
    • 2007
  • We fabricated anodic aluminium oxides (AAO) on Si and sapphire substrates from the electrochemical reactions of thin AI films in an aqueous solution of oxalic acid. The thin AI films have deposited on Si and Sapphire substructure by using E-beam evaporation and thermal evaporation, respectively. The formation of AAO structures has investigated from FE-SEM measurement image and showed randomly distributed phase of nanoholes instead of the periodic lattice of photonic crystals. The AAO structure on sapphire shows the double layers of nanoholes.

  • PDF

Microstructural Analysis of Anodic Oxide Layers Formed in a Boric Acid Solution for Al Electrolytic Capacitor Foils (붕산용액에서 형성된 알루미늄 전해콘덴서용 박의 화성피막 조직분석)

  • Kim, Seong-Gap;Kim, Seong-Su;O, Han-Jun;Jo, Nam-Don;Ji, Chung-Su
    • Korean Journal of Materials Research
    • /
    • v.11 no.4
    • /
    • pp.329-334
    • /
    • 2001
  • Microstructures of barrier-type oxide layers on aluminum was studied by XRD, TEM and RBS. Fer formation of oxide layer. aluminum was anodized in a boric acid solution. The thickness of the oxide film subjected to applied voltage increased linearly at ratio of 1.54nm/V. For oxide layer anodized at 300V, amorphous structure of oxide layer was not transformed after heat treatment at 50$0^{\circ}C$ , while for oxide layers anodized at higher voltages the amorphous structure crystallized into a ${\gamma}$-alumina without any heat treatment. It was also found that the amorphous structure of oxide layer formed at 100V transformed into crystalline structure by electron irradiation. The structure was identified as ${\gamma}$-alumina.

  • PDF

ANODICALLY-BONDED INTERFACE OF GLASS TO ALUMINIUM

  • Takahashi, Makoto;Nishikawa, Satoru;Chen, Zheng;Ikeuchi, Kenji
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.65-69
    • /
    • 2002
  • An Al film deposited on the Kovar alloy substrate was anodically-bonded to the borosilicate glass, and the bond interfaces was closely investigated by transmission electron microscopy. Al oxide was found to form a layer ~l0 nm thick at the bond interface, and fibrous structure of the same oxide was found to grow epitaxially in the glass from the oxide layer. The fibrous structure grew with the bonding time. The mechanism of the formation of this fibrous structure is proposed on the basis of the migration of Al ions under the electric field. Penetration of Al into glass beyond the interfacial Al oxide was not detected. The comparison of the amount of excess oxygen ions generated in the alkali depletion layer with that incorporated in the Al oxide suggests that the growth of the alkali-ion depletion layer is controlled by the consumption of excess oxygen to form the interfacial Al oxide.

  • PDF

Anti-fouling Property of Hydrophobic Surfaces in Sea Water (소수성 표면의 해수 방오성능)

  • Cho, S.H.;Ryu, S.N.;Hwang, W.B.;Yoon, B.S.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.2
    • /
    • pp.82-87
    • /
    • 2013
  • Effects of material surface property, hydrophobic or hydrophilic, on the bio-fouling occurred on the bodies submerged in the sea water are investigated experimentally. 4 test models are used in the experiment, which includes aluminum foil in common use, AAO applied hydrophobic surface, HDFS coated hydrophobic surface and hydrophilic surface. Hydrophobic surfaces with numerous micro & nano-scale pillars on it seems to play very important role of preventing them from fouling in initial stage while the effects disappear in long term sense of fouling process. It is concluded that the surface hydrophobicity retards the initial fouling until the fouling thickness is smaller than the heights of the pillars on it but the effects diminish with the fouling proceeds so that the thickness grows bigger than the pillar heights.

Observation of Corrosion Behavior with Aluminum 5052 Alloy by Modulating Anodization Time (양극산화 공정시간에 따른 알루미늄 5052 합금의 산화피막 성장 및 내식성 관찰)

  • Ji, HyeJeong;Choi, Dongjin;Jeong, Chanyoung
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.67-67
    • /
    • 2018
  • The 5xxx series aluminum alloys are recently used in not only marine system but also automotive area because of a low density material, good mechanical properties and better resistance to corrosion. However, Aluminum alloys are less resistant than the purest aluminum such as 1xxx aluminum alloy. Electrochemical anodization technique has attracted in the area of surface treatment because of a simple procedure, a low-cost efficiency than other techniques such as lithography and a large volume of productivity, and so on. Here, The relationship between the corrosion behavior and the thickness of aluminum anodic oxide have been studied. Prior to anodization, The 5052 aluminum sheets ($30{\times}20{\times}1mm$) were degreased by ultra-sonication in acetone and ethanol for 10 minutes and eletropolished in a mixture of perchloric acid and ethanol (1:4, volume ratio) under an applied potential of 20V for 60 seconds to obtain a regular surface. During anodization process, Aluminum alloy was used as a working electrode and a platinum was used as a counter electrode. The two electrodes were separated at a distance of 5cm. The applied voltage of anodization is conducted at 40V in a 0.3M oxalic acid solution at $0^{\circ}C$ with appropriate magnetic stirring. The surface morphology and the thickness of AAO films was observed with a Scanning Electron Microscopy (SEM). The corrosion behavior of all samples was evaluated by an open-circuit potential and potentio-dynamic polarization test in 3.5wt% NaCl solution. Thus, The corrosion resistance of 5052 aluminum alloy is improved by the formation of an anodized oxide film as function of increase anodization time which artificially develops on the metal surface. The detailed electrochemical behavior of aluminum 5052 alloy will be discussed in view of the surface structures modified by anodization conditions such as applied voltages, concentration of electrolyte, and temperature of electrolyte.

  • PDF

A Study on the Preparation and Application of Au/TiO2 Nanofiber from AAO Template (AAO Template를 이용한 Au/TiO2 나노섬유 제조 및 응용에 관한 연구)

  • Eom, Seon-Mi;Park, Sang-Sun;Kim, Young-Deok;Kim, Yong-Rok;Shul, Yong-Gun
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.1
    • /
    • pp.47-53
    • /
    • 2009
  • In this study, highly ordered AAO (Anodic Aluminum Oxide) with nanopores was prepared by commercial grade Al substrate containing 3.5 wt.% impurities through two step anodizing method. Nanopores of prepared AAO arrays were used as templates for preparing nanofiber. $TiO_2$ was deposited by using DP (deposition-precipitation) method into AAO pores to grow nanofiber. Au particles were loaded on this $TiO_2$ nanofiber which was grown vertically. Prepared 2 wt.% $Au/TiO_2$ nanofiber was characterized by XRD, SEM and Raman. The crystal structure was analyzed by the XRD. SEM was used to observe pore size and pore wall thickness. Photocatalytic activity of co-oxidation was compared with $TiO_2$ and $Au/TiO_2$ nanofiber on AAO arrays.

Observation of Diverse Aluminum Oxide Structures in a Phosphoric Acid Solution according to the Applied Anodization Voltage (인산용액에서 양극산화 인가전압에 따른 알루미늄 산화피막 성장 관찰)

  • Jeong, Chanyoung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.1
    • /
    • pp.35-39
    • /
    • 2019
  • To date, porous alumina structures have been implemented by electrochemical anodization technique. The anodizing methods can easy to make a porous aluminum oxide film with a regular arrangement, but oxide film with complex structure type such as pillar-on-pore is relatively difficult to implement. Therefore, this study aims to observe the change of anodized oxide pore size, thickness, and structure in a phosphoric acid solution according to applied anodization voltage conditions. For the implementation of hybrid composite oxide structures, it is possible to create by modulating anodization voltage. The experimental conditions were performed at the applied anodization voltage of 100 V and 120 V in 10% phosphoric acid solution, respectively. The experimental results were able to observe the structure of oxides in the form of porous and composite structures (pillar-on-pore), depending on each condition.

Effect of Annealing on the Pitting Corrosion Resistance of Anodized Aluminum-Magnesium Alloy Processed by Equal Channel Angular Pressing

  • Son, In-Joon;Nakano, Hiroaki;Oue, Satoshi;Kobayashi, Shigeo;Fukushima, Hisaaki;Horita, Zenji
    • Corrosion Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.275-281
    • /
    • 2007
  • The effect of annealing on the pitting corrosion resistance of anodized Al-Mg alloy (AA5052) processed by equal-channel angular pressing (ECAP) was investigated by electrochemical techniques in a solution containing 0.2 mol/L of $AlCl_3$ and also by surface analysis. The Al-Mg alloy was annealed at a fixed temperature between 473 and 573 K for 120 min in air after ECAP. Anodizing was conducted for 40 min at $100-400A/m^2$ at 293 K in a solution containing 1.53 mol/L of $H_2SO_4$ and 0.0185 mol/L of $Al_2(SO_4)_3$. The internal stress generated in anodic oxide films during anodization was measured with a strain gauge to clarify the effect of ECAP on the pitting corrosion resistance of anodized Al-Mg alloy. The time required to initiate the pitting corrosion of anodized Al-Mg alloy was shorter in samples subjected to ECAP, indicating that ECAP decreased the pitting corrosion resistance. However, the pitting corrosion resistance was greatly improved by annealing after ECAP. The time required to initiate pitting corrosion increased with increasing annealing temperature. The strain gauge attached to Al-Mg alloy revealed that the internal stress present in the anodic oxide films was compressive stress, and that the stress was larger with ECAP than without. The compressive internal stress gradually decreased with increasing annealing temperature. Scanning electron microscopy showed that cracks occurred in the anodic oxide film on Al-Mg alloy during initial corrosion and that the cracks were larger with ECAP than without. The ECAP process of severe plastic deformation produces large internal stresses in the Al-Mg alloy; the stresses remain in the anodic oxide films, increasingthe likelihood of cracks. It is assumed that the pitting corrosion is promoted by these cracks as a result of the higher internal stress resulting from ECAP. The improvement in the pitting corrosion resistance of anodized AlMg alloy as a result of annealing appears to be attributable to a decrease in the internal stresses in anodic oxide films