• Title/Summary/Keyword: Anode material

Search Result 722, Processing Time 0.032 seconds

A study on the enhancement of hole injection in OLED using NiO/AZO Anode (NiO/AZO anode를 적용한 OLED의 정공주입 향상에 관한 연구)

  • Jin, Eun-Mi;Song, Min-Jong;Kim, Jin-Sa;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.444-445
    • /
    • 2007
  • Aluminum-doped zinc oxide (AZO) films are attractive materials as transparent conductive electrode because they are inexpensive, nontoxic and abundant element compared with indium tin oxide (ITO). AZO films have been deposited on glass (coming 1737) substrates by RF magnetron sputtering system. An ultrathin layer of nickel oxide (NiO) was deposited on the AZO anode to enhance the hole injections in organic light-emitting diodes (OLED). The current density-voltage and luminescence-voltage properties of devices were studied and compared with ITO device.

  • PDF

Fuel Cell Performance by the Impedance Method (임피던스법을 이용한 연료전지의 특성 연구)

  • 서장수;김귀열;명기환;이성일;김용주
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.927-933
    • /
    • 2000
  • The molten carbonate fuel cell has conspicuous feature and high potential in being used as an energy converter of various fuel to electricity and heat. However, the MCFC which use strongly corrosive molten carbonate at 650$^{\circ}C$ have many problem. Systematic investigation on corrosion behavior of Fe/20Cr/Ti alloys has been done in (62+38)mol% (Li+K)CO3 melt at 923K by using steady state polarization and electrochemical impedance spectroscopy method. And, The research and development for the solid oxide fuel cell have been promoted rapidly and extensively in recent years, because of their high efficiency and future potential. Therefore this paper describes the manufacturing method and characteristics of anode electrode for SOFC, by the way , Ni-YSZ materials are used as anode of SOFC widely. So in this experiments, we investigated the optimum content of Ni, by the impedance characteristics, overvoltage. As a results, the performance of Ni-YSZ anode(40vo1%) was better excellent than the others.

  • PDF

CORROSION BEHAVIOR OF Al-Zn ALLOY AS A SACRIFICIAL ANODE OF ORV TUBES

  • Jin, Huh;Lee, Ho-Kyun;Lee, Jae-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.452-455
    • /
    • 1999
  • ORV which vaporizes LNG to NG is consisted of tube and header whose substrate is aluminum alloy. The corrosion of the tube is very severe because of sea water being used as the heating source. In this research to protect ORV substrate material, the corrosion behavior of aluminum alloys was investigated for the sacrificial role of Al-Zn alloy for ORV tubes. The electrochemical behavior of aluminum alloys in sea water was investigated. The corrosion behavior of thermally-sprayed and cladded samples were compared through salt spray tests. Al-Zn alloy can act as a sacrificial anode and cladded Al-Zn alloy has a better corrosion resistance than that of thermally sprayed one. The galvanic effect of Al-Zn to substrate material was conformed from scratched sample tests.

  • PDF

Black Phosphorus Nano Flake Lithium Ion Battery Using Electrophoretic Deposition (전기영동 증착법을 이용한 Black Phosphorus Nano Flake 리튬이온 배터리)

  • Kim, Juyun;Park, Byoungnam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.3
    • /
    • pp.252-255
    • /
    • 2019
  • Black phosphorus (BP) is a potential candidate for an anode in lithium ion batteries due to its high theoretical capacity and the large interlayer spacing in the monolayered phosphorene form, allowing for lithium intercalation/deintercalation. In this study, large-scale exfoliation of bulk BP was accomplished using a solution of NaOH and N-methyl-2-pyrrolidone (NMP), yielding phosphorene, which can be assembled into nanoflakes using electrophoretic deposition (EPD). Through the systematic addition of NaOH and subsequent sonication, BP nanoflakes were obtained in high yields by EPD, allowing for the integration of these nanoflakes into an anode in the film state. Anodes with a charge/discharge capacity of 172 mAh/g at a rate of 200 mA/g were obtained, which are promising for battery applications through various post-film treatments.

A preliminary study of pilot-scale electrolytic reduction of UO2 using a graphite anode

  • Kim, Sung-Wook;Heo, Dong Hyun;Lee, Sang Kwon;Jeon, Min Ku;Park, Wooshin;Hur, Jin-Mok;Hong, Sun-Seok;Oh, Seung-Chul;Choi, Eun-Young
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1451-1456
    • /
    • 2017
  • Finding technical issues associated with equipment scale-up is an important subject for the investigation of pyroprocessing. In this respect, electrolytic reduction of 1 kg $UO_2$, a unit process of pyroprocessing, was conducted using graphite as an anode material to figure out the scale-up issues of the C anode-based system at pilot scale. The graphite anode can transfer a current that is 6-7 times higher than that of a conventional Pt anode with the same reactor, showing the superiority of the graphite anode. $UO_2$ pellets were turned into metallic U during the reaction. However, several problems were discovered after the experiments, such as reaction instability by reduced effective anode area (induced by the existence of $Cl_2$ around anode and anode consumption), relatively low metal conversion rate, and corrosion of the reactor. These issues should be overcome for the scale-up of the electrolytic reducer using the C anode.

Electrochemical treatment of cefalexin with Sb-doped SnO2 anode: Anode characterization and parameter effects

  • Ayse, Kurt;Hande, Helvacıoglu;Taner, Yonar
    • Advances in nano research
    • /
    • v.13 no.6
    • /
    • pp.513-525
    • /
    • 2022
  • In this study, it was aimed to evaluate direct oxidation of aqueous solution containing cefalexin antibiotic with new generation Sn/Sb/Ni: 500/8/1 anode. The fact that there is no such a study on treatment of cefalexin with these new anode made this study unique. According to the operating parameters evaluation COD graphs showed clearer results compared to TOC and CLX and thus, it was it was chosen as major parameter. Furthermore, pseudo-first degree kd values were calculated from CLX results to show more accurate and specific results. Experimental results showed that after 60 min of electrochemical oxidation, complete removal of COD and TOC was accomplished with 750 mg L-1 KCl, at pH 7, 50 mA cm-2 current density and 1 cm anode-cathode distance. Also, the stability of the Sn/Sb/Ni anode was evaluated by taking SEM and AFM images and XRD analysis before and after of electrochemical oxidation processes. According to the results, it was not occurred too much change on the anode surface even after 300 h of electrolysis. Thus, it was thought that the anode material was not corroded to a large extent. Furthermore, the removal efficiencies were very high for almost all the time and conditions. According to the results of the study, electrochemical oxidation with new generation Sn/Sb/Ni anodes for the removal of cefalexin antibiotic was found very successful and applicable due to require less reaction time complete mineralization and doesn't require pH adjustment step compared to other studies in literature. In future studies, different antibiotic types should be studied with this anode and maybe with real wastewaters to test applicability of the process in treatment of pharmaceutical wastewaters containing antibiotics, in a better way.

Electrochemical Characteristics of Lithium Vanadium Oxide for Lithium Secondary Battery

  • Kim, Hyung-Sun;Cho, Byung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1267-1269
    • /
    • 2010
  • The pure crystalline $Li_{1.1}V_{0.9}O_2$ powder has been prepared by a simple solid state reaction of $Li_2CO_3$ and $V_2O_3$ precursors under nitrogen gas containing 10 mol % hydrogen gas flow. The structure of $Li_{1.1}V_{0.9}O_2$ powder was analyzed using Xray diffraction (XRD) and scanning electron microscope (SEM). The stoichiometric $Li_{1.1}V_{0.9}O_2$ powder was used as anode active material for lithium secondary batteries. Its electrochemical properties were investigated by cyclic voltammetry and constant current methods using lithium foil electrode. The observed specific discharge capacity and charge capacity were 360 mAh/g and 260 mAh/g during the first cycle, respectively. In addition, the cyclic efficiency of this cell was 72.2% in the first cycle. The specific capacity of $Li_{1.1}V_{0.9}O_2$ anode rapidly declines as the current rate increases and retains only 30 % of the capacity of 0.1C rate at 1C rate. The crystallinity of the $Li_{1.1}V_{0.9}O_2$ anode decrease as discharge reaction proceeds. However, the relative intensity of main peaks was almost recovered when the cell was charged up to 1.5 V.

Anode Material Nanoparticles on Carbon Materials by Electrodeposition for Stability Anodes of Lithium Ion Battery

  • Choe, Su-Jeong;U, Seon-Hwak;Lee, Ji-Hui;Park, Jin-Hwan;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.419-420
    • /
    • 2012
  • Lithium-ion battery (LIB) usually used for valuable electronic devices are extended to applications. High stability negative electrode materials for LIB were investigated using electrodeposition of nanoparticles (NPs) on the nanostructured carbon. NPs with about 70 nm diameters were evenly prepared on the graphitic carbon materials using electrodeposition process at room temperature. It was observed that the NPs were homogeneously embedded into not only external surface but bottom part of the graphitic carbon network. The graphitic carbon material covered with NPs enables facile electron transport owing to the network structure and improves structural collapse during cycling. This facile room temperature process is expected to be applicable to other anode materials such as Sn and Al for the anode of LIB.

  • PDF

A Study on the removal of Metallic Impurities on Si-wafer using Electrolyzed Water (전해수를 이용한 실리콘 웨이퍼 표면의 금속오염 제거)

  • Yoon, Hyo-Seob;Ryoo, Kun-Kul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.1-5
    • /
    • 2000
  • As the semiconductor devices are miniaturized, the number of the unit cleaning processes increases. In order to processes by conventional RCA cleaning process, the consumption of volume of liquid chemical and DI water became huge. Therefore, the problem of environmental issues are evolved by the increased consumption of chemicals. To resolve this matter, an advanced cleaning process by Electrolyzed Water was studied in this work. The electrolyzed water was made by an electrolysis equipment which was composed of three chambers of anode, cathode, and middle chambers. In the case of electrolyzed water with electrolytes in the middle chamber, oxidatively acidic water of anode and reductively alkaline water of cathode were obtained. The oxidation/reduction potentials and pH of anode water and cathode water were measured to be +l000mV and 4.8, and -530mV and 6.3, respectively. The Si-wafers contaminated with metallic impurities were cleaning with the electrolyzed water. To analysis the amounts of metallic impurities on Si-water surfaces, ICP-MS(Inductively Coupled Plasma-Mass spectrometer) was introduced. From results of ICP-MS measurements, it was concluded that the ability of electrolyzed water was equivalent to that of the conventional RCA cleaning.

  • PDF

Anode Properties of Boron Doped Polyacene Derived from Phenolic Resin (페놀수지로부터 유도된 Boron을 Doping한 polyacene계 부극의 특성)

  • Oh, Won-Chun;Park, Seung-Huyk;Kim, Bum-Soo
    • Analytical Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.705-711
    • /
    • 2000
  • We have studied the structural characterization, surface morphology and electrical properties for boron dopped polyacene anode material from phenolic resin for lithium secondary battery. The boron dopped anode material were characterized as boron contents of 5, 10, 15 and 20%, respectively. From the X-ray results, the all kinds of compounds were observed for the diffraction patterns for typical amorphous carbons. The SEM morphology showed formation of semi spherical granule for the boron dopped compounds. As the result of the electrical charge/discharge and impedance data, the 10 and 15% boron dopped materials showed good properties on the ions and electron transfer effect of battery.

  • PDF