• Title/Summary/Keyword: Anode Properties

Search Result 488, Processing Time 0.026 seconds

Crystallographic Effects of Anode on the Mechanical Properties of Electrochemically Deposited Copper Films (아노드의 결정성에 따른 전기도금 구리박막의 기계적 특성 연구)

  • Kang, Byung-Hak;Park, Jieun;Park, Kangju;Yoo, Dayoung;Lee, Dajeong;Lee, Dongyun
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.714-720
    • /
    • 2016
  • We performed this study to understand the effect of a single-crystalline anode on the mechanical properties of as-deposited films during electrochemical deposition. We used a (111) single- crystalline Cu plate as an anode, and Si substrates with Cr/Au conductive seed layers were prepared for the cathode. Electrodeposition was performed with a standard 3-electrode system in copper sulfate electrolyte. Interestingly, the grain boundaries of the as-deposited Cu thin films using single-crystalline Cu anode were not distinct; this is in contrast to the easily recognizable grain boundaries of the Cu thin films that were formed using a poly-crystalline Cu anode. Tensile testing was performed to obtain the mechanical properties of the Cu thin films. Ultimate tensile strength and elongation to failure of the Cu thin films fabricated using the (111) single-crystalline Cu anode were found to have increased by approximately 52 % and 37 %, respectively, compared with those values of the Cu thin films fabricated using apoly-crystalline Cu anode. We applied ultrasonic irradiation during electrodeposition to disturb the uniform stream; we then observed no single-crystalline anode effect. Consequently, it is presumed that the single-crystalline Cu anode can induce a directional/uniform stream of ions in the electrolyte that can create films with smeared grain boundaries, which boundaries strongly affect the mechanical properties of the electrodeposited Cu films.

Effects of Porous Microstructure on the Electrochemical Properties of Si-Ge-Al Base Anode Materials for Li-ion Rechargeable Batteries (리튬이차전지용 다공성 Si-Ge-Al계 음극활물질의 전기화학적 특성)

  • Cho, Chung Rae;Kim, Myeong Geun;Sohn, Keun Yong;Park, Won-Wook
    • Journal of Powder Materials
    • /
    • v.24 no.1
    • /
    • pp.24-28
    • /
    • 2017
  • Silicon alloys are considered promising anode active materials to replace Li-ion batteries by graphite powder, because they have a relatively high capacity of up to 4200 mAh/g, and are environmentally friendly and inexpensive ECO-materials. However, its poor charge/discharge properties, induced by cracking during cycles, constitute their most serious problem as anode electrode. In order to solve these problems, Si-Ge-Al alloys with porous structure are designed as anode alloy powders, to improve cycling stability. The alloys are melt-spun to obtain the rapidly solidified ribbons, and then ball-milled to make fine powders. The powders are etched using 1 M HCl solution, which gives the powders a porous structure by removing the element Al. Subsequently, in this study, the microstructures and the characteristics of the etched powders are evaluated for application as anode materials. As a result, the etched porous powder shows better electrochemical properties than as-milled Si-Ge-Al powder.

Optical and electrical properties of organic light-emitting diodes with ITO and AZO base various anode configurations

  • An, Jin-Hyung;Kim, Sang-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1079-1081
    • /
    • 2006
  • Optical and electrical properties of various transparent conducting oxides (ITO, AZO, ITO/Ag/ITO, AZO/Ag/AZO) were investigated for anode of OLED display. ITO/Ag/ITO multi-layer anode has much better electrical and optical characteristics than other films, and OLED on that anode showed lower threshold voltage and better luminescence.

  • PDF

Characteristics of Amorphous IZO Anode Films for Polymer OLEDs Grown by Box Cathode Sputtering (박스 캐소드 스퍼터로 성장시킨 고분자 유기발광소자용 비정질 IZO 애노드 박막의 특성)

  • Moon Jong-Min;Bae Jung-Hyeok;Jung Soon-Wook;Kim Han-Ki
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.6
    • /
    • pp.552-557
    • /
    • 2006
  • Electrical, optical, surface, and structural properties of amorphous indium-zinc-oxide (a-IZO) grown by box cathode sputtering (BCS) were compared with crystalline indium-tin-oxide (c-ITO) anode films grown by conventional DC sputtering (DCS). Although x-ray diffraction plot of BCS-grown IZO film shows amorphous structure, the optical and electrical properties of a-IZO is comparable to those of c-ITO film. In particular, BCS-grown IZO films shows very smooth surface without defects such as pin hole and cracks because most of the energy of the sputtered atoms was confined in high density plasma region in box cathode gun. Furthermore polymer organic light emitting diodes (POLED) with the a-IZO anode film shows better electrical properties than that of POLED with the c-ITO anode film due to high work function and smooth surface of a-IZO. This suggested that BCS-grown a-IZO film is promising anode materials substituting conventional c-ITO anode in OLED and flexible displays.

Characteristics of Amorphous IZO Anode Films Grown on Passivated PES Substrates in Oxygen Free Ambient for Flexible OLEDs (아르곤 가스만을 이용하여 PES 기판 상에 성장시킨 플렉시블 유기발광소자용 비정질 IZO 애노드 박막의 특성)

  • Bae, Jung-Hyeok;Moon, Jong-Min;Jung, Soon-Wook;Kang, Jae-Wook;Kim, Han-Ki
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.12
    • /
    • pp.1134-1139
    • /
    • 2006
  • Electrical, optical, and structural properties of indium zinc oxide (IZO) anode films grown by a RF magnetron sputtering were investigated as functions of RF power and working pressure in pure Ar ambient. To investigate electrical, optical and structural properties of IZO anode films, 4-point probe and UV/VIS spectrometry, and X-ray diffraction (XRD) were performed, respectively. A sheet resistance of $15.2{\Omega}/{\square}$, average transmittance above 80 % in visible range, expecially above 85 % in 550 nm, and root mean square roughness of 1.13 nm were obtained from optimized IZO anode films grown in oxygen free ambient. All samples show amorphous structure regardless of RF power and working pressure due to low substrate temperature. In addition, XPS depth profile obtained from IZO/PES exhibits that there is no obvious evidence of interfacial reaction between IZO and PES substrate. Furthermore, current-voltage-luminance of the flexible phosphorescent flexible OLEDs fabricated on IZO anode shows dependence on sheet resistance of the IZO anode. These results indicate that the IZO anode is a promising candidate to substitute conventional ITO anode for high-quality flexible displays.

Characteristics of ITO films grown by linear facing target sputtering (FTS) and OLEDs properties fabricated on FTS-grown ITO anode (선형 대향 타겟 스퍼터를 이용하여 제작한 ITO 박막의 특성과 이를 이용하여 제작한 유기발광소자 특성)

  • Kim, Han-Ki;Moon, Jong-Min;Kim, Ji-Hwim;Kim, Jang-Joo;Kang, Jae-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.401-402
    • /
    • 2007
  • The preparation and characteristics of ITO anode films grown using a linear facing target sputtering (FTS) technique for use in organic light emitting diodes (OLED) and flexible OLED is described. The electrical, optical, and work function of the ITO anode, which was prepared by linear FTS at room temperature, were comparable to those of commercial ITO anode films. In particular, linear FTS-grown ITO films shows very smooth surface without defects such as pin hole and cracks due to low substrate temperature. Furthermore OLED with the linear FTS-grown ITO anode film shows comparable electrical and optical properties to those of OLED with the commercial crystalline-ITO anode film. This suggested that linear FTS is promising thin film technology for preparing high quality anode film in OLEDs and flexible OLEDs.

  • PDF

Performance of Expanded Graphite as Anode Materials for High Power Li-ion Secondary Batteries

  • Park, Do-Youn;Lim, Yun-Soo;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.11 no.4
    • /
    • pp.343-346
    • /
    • 2010
  • The various expanded graphites (EGs) was prepared and applied as anode material for high power Li-ion secondary battery (LIB). By changing the processing conditions of EG, a series of EG with different structure were produced, showing the changed electrochemical properties. The charge-discharge test showed that the initial reversible capacity of EG anodes prepared at the suitable conditions was over 400 mAh/g and the charge capacity at 5 C-rate was 83.2 mAh/g. These values demonstrated the much improved electrochemical properties as compared with those for the graphite anode of 360 mAh/g and 19.4 mAh/g, respectively, showing the possibility of EG anode materials for high power LIB.

Effect of Solution-treated on Electrochemical Properties of AZ91 Magnesium Alloy Anode

  • Zhiquan, Huang;Yanjie, Pei;Renyao, Huang;Xiangyu, Gao;Jinchao, Zou;Lianyun, Jiang
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.486-496
    • /
    • 2022
  • The effect of solution-treated on the self-corrosion performance and discharge performance of AZ91 magnesium alloy as anode material was analyzed by microscopic characterization, immersion tests, electrochemical measurements, and discharge performance tests. The study shows that the β-phase in the AZ91 magnesium alloy gradually dissolved in the matrix with the increase of the solution temperature, and the electrochemical activity of the magnesium alloy anode was significantly improved. Through the comparison of three different solution-treated processes, it is found that the AZ91 magnesium alloy has the most vigorous activity and better discharge performance after solution-treated of 415℃+12 h. In addition, the proportion and distribution of β-phase AZ91 magnesium alloy have a direct impact on its discharge performance as an anode material.

Electrochemical Properties of Lithium Anode for Thermal Batteries (열전지용 리튬음극의 전기화학적 특성)

  • Im, Chae-Nam;Yoon, Hyun Ki;Ahn, Tae-Young;Yeo, Jae Seong;Ha, Sang Hyeon;Yu, Hye-Ryeon;Baek, Seungsu;Cho, Jang Hyeon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.696-702
    • /
    • 2018
  • Recently, the current thermal battery technology needs new materials for electrodes in the power and energy density to meet various space and defense requirements. In this paper, to replace the pellet type Li(Si) anode having limitations of the formability and capacity, electrochemical properties of the lithium anode with high density for thermal batteries were investigated. The lithium anode (Li 17, 15, 13 wt%) was fabricated by mixing the molten lithium and iron powder used as a binder to hold the molten lithium at $500^{\circ}C$. The single cell with 13 wt% lithium showed a stable performance. The 2.06 V (OCV) of the lithium anode was significantly improved compared to 1.93 V (OCV) of the Li(Si) anode. Specific capacities during the first phase of the lithium anode and Li(Si) were 1,632 and $1,181As{\cdot}g^{-1}$, respectively. As a result of the thermal battery performance test at both room and high temperatures, the voltage and operating time of lithium anode thermal batteries were superior to those of using Li(Si) anode thermal batteries. The power and energy densities of Li anode thermal batteries were also remarkably improved.

Electrochemical Properties of Tin-Encapsulated Graphite as Anode in Lithium-Ion Batteries (sSn으로 캡슐화된 그라파이트 복합체의 리튬이온전지 부극 특성)

  • ;G. X. Wang
    • Journal of Powder Materials
    • /
    • v.10 no.1
    • /
    • pp.21-25
    • /
    • 2003
  • The Sn - graphite composites were prepared by chemical encapsulation method for anode materials in Li-ion batteries. EDS and XRD analysis confirmed the presence of Sn in the graphite structure. Cyclic voltammometry (CV) measurement shows extra reduction and oxidation peaks, which might to be related to the formations of $Li_xSn$ alloy compounds. Graphite-tin composite electrodes demonstrated higher Lithium storage capacities than graphite electrodes. Due to the nature of fine Sn particles on graphite surface, the graphite-tin composite electrodes have shown a good cycle properties.