• Title/Summary/Keyword: Anode Effect

Search Result 495, Processing Time 0.029 seconds

Effect for Steel Corrosion Protection in Concrete applying Surface Coating Anode and Solar Battery (표면(表面) 코팅 양극(陽極)과 태양전기(太陽電氣)를 이용한 콘크리트 중의 철근(鐵筋) 부식(腐食) 방지(防止)를 위한 효과)

  • Kim, Jong-Pil;Park, Kwang-Pil;Kim, Seong-Soo;Jung, Ho-Seop;Lee, Seung-Tae
    • Resources Recycling
    • /
    • v.18 no.4
    • /
    • pp.44-51
    • /
    • 2009
  • In order to verify the effect of Surface Coating Anode and Solar Battery anode system, accelerated tests in the presence or absence of some chloride content and cracks were carried out. The potential-decay, protection potential and corrosion current density of reinforcing steel in concrete specimen were measured to evaluate the effectiveness of the system. From the test results, the application of the system led to the satisfaction on NACE's criterion in all mixtures of concrete. Additionally it was found that protection potential and corrosion current density were satisfied due to the application of Surface Coating Anode and Solar Battery anode system.

An Electrochemical Property Stud on the Corrosion Behavior of Welding Part of RE36 Steel for Marine Structure (해양구조물용 RE36강의 용접부 부식거동에 관한 전기화학적 특성 연구)

  • 김성종;김진경;문경만
    • Journal of Welding and Joining
    • /
    • v.18 no.5
    • /
    • pp.70-76
    • /
    • 2000
  • The effect of Post Weld Heat Treatment(PWHT) of RE36 steel for marine structure was investigated with parameters such as micro-vickers hardness, corrosion potential and corrosion current density of weld metal(WM), base metal(BM) and heat affected zone(HAZ), and both Al alloy anode generating current and Al alloy anode weight loss quantity etc. Hardness of post-weld heat treated BM, WM and HAZ is lower than that of As-welded condition of each region. However, hardness of HAZ was the highest among those three parts regardless of PWHT temperature and corrosion potential of WM was the highest among those three parts without regard to temperature and corrosion potential of WM was the highest among those three parts without regard to PWHT temperature. The amplitude of corrosion potential difference of each other three parts at PWHT temperature $550^{\circ}C$, $650^{\circ}C$ are smaller than that of three parts by As-welded condition and corrosion current density obtained by PWHT was also smaller than that of As-welded condition. Eventually, it was known that corrosion resistance was increased by PWHT. However both Al anode generating current and anode weight loss quantity were also decreased by PWHT compare to As-welded condition when RE36 steel is cathodically protected by Al anode. Therefore, it is suggested that the optimum PWHT temperature with increasing corrosion resistance and cathodic protection effect is $550^{\circ}C$.

  • PDF

Effect of Metal Ni Atomic Layer Deposition Coating on Ni/YSZ, Anode of Solid Oxide Fuel Cells (SOFCs) (고체산화물 연료전지의 Anode인 Ni/YSZ에 Ni 원자층 증착 코팅의 효과)

  • Kim, Jun Ho;Mo, Su In;Park, Gwang Seon;Kim, Hyung Soon;Kim, Do Heyoung;Yun, Jeong Woo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.1
    • /
    • pp.61-66
    • /
    • 2022
  • This study is to increase the surface area and maximize the effect of the catalyst by coating a nanometersized metal catalyst material on the anode layer using atomic layer deposition (ALD) technology. ALD process is known to produce uniform films with well-controlled thickness at the atomic level on substrates. We measured the performance by coating metals (Ni) on Ni/YSZ, which is the most widely known anode material for solid oxide fuel cells. ALD coatings began to show a decrease in cell performance over 3 nm coatings.

Effect of Cathodic Protection of Adjacent Steel Piles on the Life of Sacrificial Anode (희생양극의 수명에 미치는 인접 강파일의 음극방식 영향)

  • Moon, Kyung-Man;Lee, Kyu-Hwan;Cho, Hwang-Rae;Lee, Myung-Hoon;Kim, Yun-Hae;Kim, Jin-Gyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.76-81
    • /
    • 2008
  • There are two cases when the life of a sacrificial anode is shortened from the designed life: one case results from self-corrosion of the anode due to contamination by sea water in the other case, however, electrical current to protect some given steel piles overflows to protect other, adjacent non-protected steel piles. In this study, the variation of polarization potential of nine steel piles, being protected cathodically and with anode-producing current between anode and steel piles, was investigated. Parameters were varied, such as the eighth and ninth steel piles either connected electrically or not, and whether the ninth steel pile was protected by another sacrificial anode or not. The current produced by the sacrificial anode decreased when the ninth steel pile was cathodically protected by the anode of another pile. However, produced current increased when the ninth steel pile was not connected to another anode. The study concludes that the life of a sacrificial anode can be prolonged or shortened depending on whether adjacent steel piles are cathodically protected or not.

Effect of Anode Thickness on the Overpotential in a Molten Carbonate Fuel Cell (용융탄산염형 연료전지에서 과전압에 미치는 전극두께의 영향)

  • Lee, Choong-Gon;Lee, Sung-Yoon;Ryu, Bo-Hyun;Kim, Do-Hyung;Lim, Hee-Chun
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.1
    • /
    • pp.34-39
    • /
    • 2010
  • This work investigated the effect of anode thickness on the anodic overpotential with $100\;cm^2$ class MCFC single cells. The hydrogen oxidation rate in the molten carbonate is sufficiently high, which may lead to weak relation of overpotential with anode geometrical area. The relation of anode surface area and overpotential was analysed in terms of anode thickness in this work. Steady state polarization, inert gas step addition (ISA), and reactant gas addition (RA) methods were employed to the two cells with 0.77 mm and 0.36 mm thickness of anode. The result represented that the anodic overpotential at the cells were identical. It implied that the anodic overpotential was independent on the electrode thickness within the tested range.

Numerical Analysis of the Gas Flow Distribution Characteristics in the Anode Flow Channel of Molten Carbonate Fuel Cell (MCFC) (용융탄산염 연료전지 Anode 유로 채널에서의 가스 유동 분포에 관한 수치해석적 연구)

  • Cho, Jun-Hyun;Ha, Tae-Hun;Kim, Han-Sang;Min, Kyoung-Doug;Park, Jong-Hoon;Chang, In-Gab;Lee, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.11
    • /
    • pp.834-839
    • /
    • 2009
  • A three-dimensional computational fluid dynamics (CFD) analysis is performed to investigate flow characteristics in the anode channels and manifold of the internal reforming type molten carbonate fuel cell (MCFC). Considering the computational difficulties associated with the size and geometric complexity of the MCFC system, the polyhedral meshes that can reduce mesh connectivity problems at the intersection of the channel and the manifold are adopted and chemical reactions inside the MCFC system are not included. Through this study, the gas flow rate uniformity of the anode channels is mainly analyzed to provide basic insights into improved design parameters for anode flow channel design. Results indicate that the uniformity in flow-rate is in the range of ${\pm}$1% between the anode channels. Also, the mal-distributed inlet flow-rate conditions and the change in the size of the manifold depth have no significant effect on the flow-rate uniformity of the anode channels.

Electrochemical Characteristics of Carbon-coated Si/Cu/graphite Composite Anode

  • Kim, Hyung-Sun;Chung, Kyung-Yoon;Cho, Won-Il;Cho, Byung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1607-1610
    • /
    • 2009
  • The carbon-coated Si/Cu powder has been prepared by mechanical ball milling and hydrocarbon gas decomposition methods. The phase of Si/Cu powder was analyzed using X-ray diffraction (XRD), dispersive Raman spectroscopy, electron probe microanalysis (EPMA) and transmission electron microscope (TEM). The carbon-coated Si/Cu powders were used as anode active material for lithium-ion batteries. Their electrochemical properties were investigated by charge/discharge test using commercial LiCo$O_2$ cathode and lithium foil electrode, respectively. The surface phase of Si/Cu powders consisted of carbon phase like the carbon nanotubes (CNTs) with a spacing layer of 0.35 nm. The carbon-coated Si/Cu/graphite composite anode exhibited a higher capacity than commercial graphite anode. However, the cyclic efficiency and the capacity retention of the composite anode were lower compared with graphite anode as cycling proceeds. This effect may be attributed to some mass limitations in LiCo$O_2$ cathode materials during the cycling.

Numerical analysis of the gas flow distribution characteristics in the anode flow channel of the molten carbonate fuel cell (MCFC) (용융탄산염 연료전지 anode 유로 채널에서의 가스 유동 분포에 관한 수치해석적 연구)

  • Cho, Jun-Hyun;Ha, Tae-Hun;Kim, Han-Sang;Min, Kyoung-Doug;Park, Jong-Hoon;Chang, In-Gab;Lee, Tae-Won
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3120-3124
    • /
    • 2008
  • A three-dimensional computational fluid dynamics (CFD) analysis is performed to investigate flow characteristics in the anode channels and manifold of the internal reforming type molten carbonate fuel cell (MCFC). Considering the computational difficulties associated with the size and geometric complexity of the MCFC system, the polyhedral meshes that can reduce mesh connectivity problems at the intersection of the channel and the manifold are adopted and chemical reactions inside the MCFC system are not included. Through this study, the gas flow rate uniformity of the anode channels is mainly analyzed to provide basic insights into improved design parameters for anode flow channel design. Results indicate that the uniformity in flow-rate is in the range of ${\pm}1%$ between the anode channels. Also, the mal-distributed inlet flow-rate conditions and the change in the size of the manifold depth have no significant effect on the flow-rate uniformity of the anode channels.

  • PDF

Characterization of Nitrogen Gas Crossover in PEM Fuel Cell Stacks (고분자 연료전지 스택에서 질소 크로스오버 특성에 관한 연구)

  • Baik, Kyung-Don;Kim, Min-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2227-2230
    • /
    • 2008
  • Crossover of nitrogen from cathode to anode is inevitable in typical membranes used in PEM fuel cells. This crossovered nitrogen accumulates in anode recirculation system and excessive buildup of nitrogen in the recirculating anode gas lowers the hydrogen concentration and finally affects the performance of fuel cell stacks. In this study, characterization of nitrogen gas crossover was investigated in PEM fuel cell stacks. The mass spectroscopy (MS) has been applied to measure the amount of the crossovered nitrogen at the exit of anode. Results show that anode and cathode stoichiometric number ($SR_c$) have a big effect of nitrogen crossover.

  • PDF

The Operating Condition and Flow Field Design Effect on the Anode Water Management of a Proton Exchange Membrane Fuel Cell (PEMFC) (운전조건 및 유로형상에 따른 고체고분자형 연료전지의 수소극에서의 수분관리)

  • Hong, In Kwon;Kim, Sunhoe
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.518-521
    • /
    • 2011
  • A PEMFC single cell with the active area of $25cm^2$ was used to verify the effect of water management in the anode. Water management is one of the most critical operating variables. In this paper the effect of operating condition change, such as anode humidification and temperature, was investigated under constant current density of $200mA/cm^2$ where possible anode flooding operating area. Also experiments to observe the effect of the anode and cathode stoichiometry change and flow field design on the water management were performed. The water management was effected by the stoichimetry change. The temperature and humidification change also affected the fuel cell performance.