• Title/Summary/Keyword: Anode Effect

Search Result 497, Processing Time 0.023 seconds

Effect of Fabrication Method of Anode on Performance in Enzyme Fuel Cells (효소연료전지의 Anode 제조조건이 성능에 미치는 영향)

  • Lee, Se-Hoon;Hwang, Byung-Chan;Lee, Hye-Ri;Kim, Young-Sook;Chu, Cheun-Ho;Na, Il-Chai;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.667-671
    • /
    • 2015
  • Enzyme fuel cells were operated with cells composed of enzyme anode and PEMFC cathode. Enzyme anodes was fabricated by compression of a mixture of graphite particle, glucose oxidase(Gox) as a enzyme and ferrocene as a redox mediator, and then coated with Nafion ionomer solution. Performances of enzyme unit cell were measured with variation of anode manufacture factors, to find optimum condition of enzyme anode. Optimum pressure was 8.89MPa for enzyme anode pressing process. Highest power density was obtained at 60% graphite composition in enzyme anode. Optimum glucose concentration was 1.7 mol/l in anode substrate solution. The enzyme anode was stabilized by two times of deeping in Nafion solution for 1 sec.

Effect of Sheath Structure on Operating Stability in an Anode Layer Thruster

  • Yasui, Shinsuke;Yamamoto, Naoji;Komurasaki, Kimiya;Arakawa, Yoshihiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.245-250
    • /
    • 2004
  • The discharge current oscillation has been measured for various hollow anode widths and its axial positions using a 1㎾-class anode layer hall thruster. As a result, there were thresholds of magnetic flux density for stable discharge. The plasma structure inside the hollow anode was numerically analyzed using the fully kinetic 2D3V Particle-in-Cell (PIC) and Direct Simulation Monte Carlo (DSMC) methods. The results reproduced both stable and unstable operation modes. In the stable operation case, which corresponds to the case with low magnetic flux, the plasma penetrated into the hollow anode deeper than the case with higher magnetic flux density case. This suggests that comparably large substantial anode area should contribute to stable operation.

  • PDF

Crystallographic Effects of Anode on the Mechanical Properties of Electrochemically Deposited Copper Films (아노드의 결정성에 따른 전기도금 구리박막의 기계적 특성 연구)

  • Kang, Byung-Hak;Park, Jieun;Park, Kangju;Yoo, Dayoung;Lee, Dajeong;Lee, Dongyun
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.714-720
    • /
    • 2016
  • We performed this study to understand the effect of a single-crystalline anode on the mechanical properties of as-deposited films during electrochemical deposition. We used a (111) single- crystalline Cu plate as an anode, and Si substrates with Cr/Au conductive seed layers were prepared for the cathode. Electrodeposition was performed with a standard 3-electrode system in copper sulfate electrolyte. Interestingly, the grain boundaries of the as-deposited Cu thin films using single-crystalline Cu anode were not distinct; this is in contrast to the easily recognizable grain boundaries of the Cu thin films that were formed using a poly-crystalline Cu anode. Tensile testing was performed to obtain the mechanical properties of the Cu thin films. Ultimate tensile strength and elongation to failure of the Cu thin films fabricated using the (111) single-crystalline Cu anode were found to have increased by approximately 52 % and 37 %, respectively, compared with those values of the Cu thin films fabricated using apoly-crystalline Cu anode. We applied ultrasonic irradiation during electrodeposition to disturb the uniform stream; we then observed no single-crystalline anode effect. Consequently, it is presumed that the single-crystalline Cu anode can induce a directional/uniform stream of ions in the electrolyte that can create films with smeared grain boundaries, which boundaries strongly affect the mechanical properties of the electrodeposited Cu films.

Effect of the Anode-to-Cathode Distance on the Electrochemical Reduction in a LiCl-Li2O Molten Salt

  • Choi, Eun-Young;Im, Hun-Sook;Hur, Jin-Mok
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.138-144
    • /
    • 2013
  • Electrochemical reductions of $UO_2$ at various anode-to-cathode distances (1.3, 2.3, 3.2, 3.7 and 5.8 cm) were carried out to investigate the effect of the anode-to-cathode distance on the electrochemical reduction rate. The geometry of the electrolysis cell in this study, apart from the anode-to-cathode distance, was identical for all of the electrolysis runs. Porous $UO_2$ pellets were electrolyzed by controlling a constant cell voltage in molten $Li_2O-LiCl$ at $650^{\circ}C$. A steel basket containing the porous $UO_2$ pellets and a platinum plate were used as the cathode and anode, respectively. The metallic products were characterized by means of a thermogravimetric analyzer, an X-ray diffractometer and a scanning electron microscope. The electrolysis runs conducted during this study revealed that a short anode-to-cathode distance is advantageous to achieve a high current density and accelerate the electrochemical reduction process.

Investigation of the Effective Range of Cathodic Protection for Concrete Pile Specimens Utilizing Zinc Mesh Anode

  • Duhyeong Lee;Jin-A Jeong
    • Corrosion Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.195-202
    • /
    • 2024
  • A zinc mesh sacrificial anode cathodic protection method is recently being developed to protect the reinforced concrete structure in a marine environment. However, comprehensive information regarding the cathodic protection technology applied to reinforced concrete test specimens utilizing zinc mesh sacrificial anodes remains limited. Particularly, no research has investigated the effective range of sacrificial anode cathodic protection in a reinforced concrete structure regarding the transmission of protection current from zinc mesh sacrificial anode to the reinforced concrete structure, particularly concerning effects of temperature variations. This study examined the distribution of potential and current using a long single rebar and several segment reinforcing bars inside a horizontal beam. Vertical pile specimens were applied with a zinc mesh sacrificial anode to simulate concrete bridges or harbor structures. To check the effect of cathodic protection, cathodic protection potential and current of the reinforced concrete specimens were measured and 100 mV depolarization criterion test was performed. It was confirmed that effect of cathodic protection varied depending on resistivity and temperature. The cathodic protection test of pile specimens revealed that the maximum reachable range of cathodic protection current was 10 cm from the waterline as observed in the experiment.

A Study on the Development of Anode Material for Molten Carbonate Fuel Cell -Ni-Co anode- (용융탄산염 연료전지의 양극 및 대체재료의 제작에 관한 연구-Ni-Co양극에 관하여-)

  • 황상문;김선진;강성군
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.3
    • /
    • pp.166-175
    • /
    • 1994
  • The effect of Co addition on the electrochemical performance and structural stability of porous Ni anode for molten carbonate fuel cell(MCFC) was evaluated by the anodic polarization and the sintering test in the simulated MCFC anode condition ($650^{\circ}C$, 80% $H_2$+20%$CO_2$). The anode current density ranged from 110mA/$cm^2$ to 144mA/$cm^2$ was obtained at +100mV overpotential by additions of Co up to 10 wt.%. The sintering resistance of Ni-Co anodes was higher than that of the pure Ni anode. The increase of sintering resistance seemed to be to the lower diffusion coefficient of Co than that of Ni.

  • PDF

Effects of the Protection for Rebars by Embeded Sacrificial Anode in Concrete (희생양극재의 매입에 의한 콘크리트 중의 전기방식 효과)

  • 김성수;김홍삼;김종필
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1207-1212
    • /
    • 2001
  • Reinforced concrete has defects in durability due to carbonation, freezing and thawing, and penetration of chloride ions with elapse of time in spite of super structure. Especially steel corrosion in concrete due to penetration of chloride ions has result in a severe decline in service life. The principal purpose of this study is to estimate effects of sacrificial anode cathodic system, one of the electrochemical methods in order to control of steel corrosion in concrete. There are chloride content in concrete in cracked and non cracked specimen with cathodic protection. To investigate the effect of sacrificial anode cathodic protection, potential-decay with current density, corrosion ratio, etc. are measured. We have the excellent effect for control steel corrosion adaption sacrificial anode cathodic system.

  • PDF

Effect of Arsenic, Antimony, Bismuth and Lead on Passivation Behavior of Copper Anode (As, Sb, Bi, Pb가 조동의 부동태에 미치는 영향)

  • Ahana, Sung-Chen;Lee, Sang-Mun;Kim, Yong-Hwan;Chung, Won-Sub;Chung, Uoo-Chang
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.5
    • /
    • pp.215-222
    • /
    • 2006
  • The passivity behavior of copper anode containing impurities in copper sulfate solution for electrorefining process was studied at several different levels of impurities such as As, Sb, Bi and Pb. The passivity behavior was investigated by electrochemical techniques (galvanostatic, potentiodynamic and cyclic voltammetry tests) and surface analysis (optical microscopy, electron probe microanalysis, scanning electron microscopy). The results were that arsenic, antimony inhibited passivation and bismuth accelerated it and lead containing anode showed different passivity behavior from above anodes. The improved passivity characteristics could be explained by decrease in oxygen content in passivity film which resulted from a reaction among the impurities, oxygen and copper in the anode. The SEM image revealed that arsenic or antimony containing anode exhibited a porous passivity film and bismuth containing anode showed the compact passivity film and lead containing anode had loose passivity film on anode.

Effect of Lithium Contents and Applied Pressure on Discharge Characteristics of Single Cell with Lithium Anode for Thermal Batteries (리튬 함량 및 단위 셀 압력이 열전지용 리튬 음극의 방전 성능에 미치는 영향)

  • Im, Chae-Nam;Ahn, Tae-Young;Yu, Hye-Ryeon;Ha, Sang Hyeon;Yeo, Jae Seong;Cho, Jang-Hyeon;Yoon, Hyun-Ki
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.165-173
    • /
    • 2019
  • Lithium anodes (13, 15, 17, and 20 wt% Li) were fabricated by mixing molten lithium and iron powder, which was used as a binder to hold the molten lithium, at about $500^{\circ}C$ (discharge temp.). In this study, the effect of applied pressure and lithium content on the discharge properties of a thermal battery's single cell was investigated. A single cell using a Li anode with a lithium content of less than 15 wt% presented reliable performance without any abrupt voltage drop resulting from molten lithium leakage under an applied pressure of less than $6kgf/cm^2$. Furthermore, it was confirmed that even when the solid electrolyte is thinner, the Li anode of the single cell normally discharges well without a deterioration in performance. The Li anode of the single cell presented a significantly improved open-circuit voltage of 2.06 V, compared to that of a Li-Si anode (1.93 V). The cut-off voltage and specific capacity were 1.83 V and $1,380As\;g^{-1}$ (Li anode), and 1.72 V and $1,364As\;g^{-1}$ (Li-Si anode). Additionally, the Li anode exhibited a stable and flat discharge curve until 1.83 V because of the absence of phase change phenomena of Li metal and a subsequent rapid voltage drop below 1.83 V due to the complete depletion of Li at the end state of discharge. On the other hand, the voltage of the Li-Si anode cell decreased in steps, $1.93V{\rightarrow}1.72V(Li_{13}Si_4{\rightarrow}Li_7Si_3){\rightarrow}1.65V(Li_7Si_3{\rightarrow}Li_{12}Si_7)$, according to the Li-Si phase changes during the discharge reaction. The energy density of the Li anode cell was $807.1Wh\;l^{-1}$, which was about 50% higher than that of the Li-Si cell ($522.2Wh\;l^{-1}$).

Electrochemical Study on the Effect of Post-Weld Heat Treatment Affecting to Corrosion Resistance Property of the Weldment of SCM440 Steel (SCM440강 용접부의 내식성에 미치는 용접후 열처리효과에 관한 전기화학적 연구)

  • 김성종;김진경;김종호;김기준;김영식;문경만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.78-88
    • /
    • 2000
  • The effect of post-weld heat treatment(PWHT) of SCM440 steel was investigated with parameters such as micro-Vickers hardness, corrosion potential, polarization behaviors, galvanic current, Al anode generating current and Al anode weight loss, etc. Each hardness of three parts(HAZ, BM, WM) by PWHT is lower than each of as-welded parts. However, hardness of WM area was the highest among those three parts in case of both PWHT and as-welded. Corrosion potential of WM part was the highest among those three parts and WM area was also acted as cathode without regard to PWHT. The magnitude of corrosion potential difference among three parts by PWHT was larger than that of three parts of as-welded, and corrosion current by galvanic cell of these three parts by PWHT was also larger compared to as-welded. Therefore, it is suggested that corrosion resistance property of SCM440 steel is decreased by PWHT than as-welded. However, both Al anode generating current and anode weight loss were also increased by PWHT compared to as-welded when SCM400 steel is cathodically protected by Al anode.

  • PDF