• 제목/요약/키워드: Annulus Fibrosus

검색결과 22건 처리시간 0.02초

요추디스크의 생체역학 (Biomechanics of the Lumbar Intervertebral Disk)

  • 박지환
    • The Journal of Korean Physical Therapy
    • /
    • 제2권1호
    • /
    • pp.103-112
    • /
    • 1990
  • The intervertebral disc in the anterior portion of the function unit gives the spine its flexibility. The disc is attached closely to the vertebral endplates. Between these endplates and the annulus fibrosus, the nucleus pulposus of the lumbar disc is enclosed in a circle of unyielding tissues. Compressive pressure placed on the disc is dissipated circumferentially in a passive manner In response to the greater axial forced exerted on the lumbar spine in comparison to the cervical and thoracic spines, the nucleus pulposus has its greatest surface area in the lumbar spine. The intervertebral disc is not only structure that helps diss pate stresses placed on the spine. With flexion, extension, rotation, or shear stress, the load distribution on the function unit is shared by the intervertebral disc, anterior and posterior longitudinal ligaments, the facet joints and capsules, and other ligamentous structures like the ligamentum flavum, interspinous and supraspinous ligaments, which attach to the posterior elements of the functional unit.

  • PDF

DBP/PLGA 하이브리드 담체를 이용한 조직공학적 바이오 디스크 개발 (Biodisc Tissue-Engineered Using PLGA/DBP Hybrid Scaffold)

  • 고연경;김순희;정재수;하현정;윤선중;이종문;김문석;이해방;강길선
    • 폴리머
    • /
    • 제31권1호
    • /
    • pp.14-19
    • /
    • 2007
  • 탈미네랄화된 골분(demineralized bone particle, DBP)은 골/연골 형성의 강력한 유도인자로 사용된다. 본 연구에서는 용매 캐스팅/염 추출법을 이용해 함량별 DBP와 PLGA가 하이브리드화된 다공성 지지체를 실제 디스크 형태와 유사하게 제조하였다. 제조된 지지체의 특성을 분석하기 위하여 다공도, 표면 젖음성 및 물 흡수성을 측정하였다. 디스크 세포인 섬유륜 및 수핵 세포는 토끼로부터 분리하여 제조된 지지체에 각각 파종한 후, 지지체를 재조합하여 배양하였다. 지지체에 파종된 디스크 세포의 생존율과 증식률은 MTT(3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium-bromide) 분석 방법을 이용하였고, 면역결핍 쥐의 피하에 삽입하여 이들의 디스크 조직 형성 정도를 확인하였다. 피하에 이식된 지지체를 적출하여 육안으로 관찰하고 모폴로지의 변화를 확인한 후, 조직을 파라핀으로 고정시켜 슬라이드를 제조하여 hematoxylin과 eosin 염색을 수행하였다. 천연/합성 하이브리드 담체로서의 DBP/PLGA 담체가 PLGA 단독으로 사용하였을 때와 비교하여 볼 때 디스크 조직의 형성이 우수하였으며, 특히 20, 40%의 DBP가 함유된 지지체가 세포의 성장과, 디스크 조직화에 유리함을 확인하였다.

조직공학적 섬유륜재생을 위한 PLGA 지지체 제조시 다공크기의 영향에 관한 연구 (The Effect of Pore Sizes on Poly(L-lactide-co-glycolide) Scaffolds for Annulus Fibrosus Tissue Regeneration)

  • 소정원;장지욱;김순희;최진희;이종문;민병현;강길선
    • 폴리머
    • /
    • 제32권6호
    • /
    • pp.516-522
    • /
    • 2008
  • 생분해성 고분자인 poly(L-lactide-co-glycolide) (PLGA)를 이용한 조직공학용 다공성 지지체에서의 공극률, 공극의 크기, 공극의 모양 등은 주입된 세포들이 안착하여 증식하는데 있어서 중요한 요건 중 하나이다. 본 연구에서는 섬유를 세포와 다공크기와의 관계를 파악하고자 다공형성물질인 염화나트륨을 다섯 개의 범위로 분류하여 용매캐스팅/염추출법을 이용한 다양한 다공크기를 갖는 다공성 지지체를 제조하였다. (3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium-bromide) (MMT) 분석방법을 이용하여 제조된 지지체에 파종된 섬유륜 세포의 생존율과 증식률을 확인하였으며, in vitro 환경에서의 콜라겐 양과 DNA량을 측정하였다. In vitro 환경에의 세포간의 발생하는 여러 상호작용을 확인하기 위하여 면역결핍 쥐의 피하에 섬유륜 세포가 파종된 지지체를 이식하여 sulfated g1ycosaminoglycan(SGAG)의 합성정도와 조직학적인 평가를 수행하였다. 결론적으로 $180{\sim}250{\mu}m$ 다공크기를 갖는 지지체에서 높은 세포 생존율과 체내에서의 원할한 세포외기질의 형성을 보임으로써 여타의 지지체보다 섬유를 조직 재생에 적절할 것으로 사료된다.

Extraforaminal Extrusion of Intervertebral Disc Misdiagnosed as Neurogenic Tumor: a Case Report

  • Chun, Se-Woong;Park, Young-Seop;Heo, Won;Baek, Kyeonghee;Moon, Jin Il
    • Investigative Magnetic Resonance Imaging
    • /
    • 제21권2호
    • /
    • pp.109-113
    • /
    • 2017
  • A 55-year-old male presented with dysesthesia of the right anteromedial thigh. A magnetic resonance image revealed a globular mass at the right extraforaminal area of the L3/4 level. Based on the diagnosis of neurogenic tumor, surgical excision was performed. The surgical impression and pathology confirmed extrusion of intervertebral disc. In a retrospective review of the magnetic resonance image, we noticed a fibrillary pattern directed from the intervertebral disc space to the lesion, and disrupted annulus fibrosus and indentation caused by the ring apophysis. We suggest aforementioned features, indicative of intervertebral disc lesions, to be checked when interpreting mass lesions around the intervertebral foramen.

Matrix Degradative Enzymes and Their Inhibitors during Annular Inflammation : Initial Step of Symptomatic Intervertebral Disc Degeneration

  • Kim, Joo Han;Park, Jin Hyun;Moon, Hong Joo;Kwon, Taek Hyun;Park, Youn Kwan
    • Journal of Korean Neurosurgical Society
    • /
    • 제55권5호
    • /
    • pp.237-243
    • /
    • 2014
  • Objective : Symptomatic disc degeneration develops from inflammatory reactions in the annulus fibrosus (AF). Although inflammatory mediators during annular inflammation have been studied, the roles of matrix metalloproteinases (MMPs) and their inhibitors have not been fully elucidated. In this study, we evaluated the production of MMPs and tissue inhibitors of metalloproteinase (TIMPs) during annular inflammation using an in vitro co-culture system. We also examined the effect of notochordal cells on annular inflammation. Methods : Human AF (hAF) pellet was co-cultured for 48 hours with phorbol myristate acetate-stimulated macrophage-like THP-1 cells. hAF pellet and conditioned media (CM) from co-cultured cells were assayed for MMPs, TIMPs, and insulin-like growth factor (IGF)-1 levels using real-time reverse-transcriptase polymerase chain reaction and enzyem-linked immunosorbent assay. To evaluate whether notochordal cells affected MMPs or TIMPs production on annular inflammation, hAF co-cultured with notochordal cells from adult New Zealand White rabbits, were assayed. Results : MMP-1, -3, -9; and TIMP-1 levels were significantly increased in CM of hAF co-cultured with macrophage-like cells compared with hAF alone, whereas TIMP-2 and IGF-1 levels were significantly decreased (p<0.05). After macrophage exposure, hAF produced significantly more MMP-1 and -3 and less TIMP-1 and -2. Interleukin-$1{\beta}$ stimulation enhanced MMP-1 and -3 levels, and significantly diminished TIMP-2 levels. Co-culturing with rabbit notochordal cells did not significantly influence MMPs and TIMPs production or COL1A2 gene expression. Conclusion : Our results indicate that macrophage-like cells evoke annular degeneration through the regulation of major degradative enzymes and their inhibitors, produced by hAF, suggesting that the selective regulation of these enzymes provides future targets for symptomatic disc degeneration therapy.

Rabbit Model for in vivo Study of Intervertebral Disc Degeneration and Regeneration

  • Kong, Min-Ho;Do, Duc-H.;Miyazaki, Masashi;Wei, Feng;Yoon, Sung-Hwan;Wang, Jeffrey C.
    • Journal of Korean Neurosurgical Society
    • /
    • 제44권5호
    • /
    • pp.327-333
    • /
    • 2008
  • Objective: The purpose of this study is to verify the usefulness of the rabbit model for disc degeneration study. Materials: The L1-L2, L2-L3, L3-L4. or L4-L5 lumbar intervertebral disc (IVD) of 9 mature male New Zealand White rabbits were injured by inserting a 16-gauge needle to a depth of 5 mm in the left anterolateral annulus fibrosus while leaving L5-L6 IVD uninjured. Three other rabbits also received intradiscal injections of rabbit disc cells transfected with adenovirus and bone morphogenetic protein-2 (ad-BMP-2) at L4-L5 in addition to injury by 16-gauge needle at the L1-L2 level. Using digitized radiographs, measurements of IVD height were made and analyzed by using the disc height index (DHI). Magnetic resonance imaging (MRI) scans of the injured discs, injected discs, and uninjured L5-L6 discs were performed at 15 weeks post surgery and compared with preoperative MRI scans. Results: All twelve rabbits showed consistent results of disc degeneration within 15 weeks following annular puncture. DHIs of injured discs were significantly lower than that of the uninjured L5-L6 discs (p<0.05). The mean value of disc degeneration grade of injured discs was significantly higher than that of uninjured discs (p<0.05). The injection of disc cell transfected with ad-BMP-2 did not induce disc regeneration at 15 weeks after injection. Conclusion: This study showed that the injured disc had a significant change in DHI on simple lateral radiograph and disc degeneration grade on MRI scans within 15 weeks in all rabbits. Rabbit annular puncture model can be useful as a disc degeneration model in vivo.

Efficacy of transforaminal laser annuloplasty versus intradiscal radiofrequency annuloplasty for discogenic low back pain

  • Park, Chan Hong;Lee, Kyoung Kyu;Lee, Sang Ho
    • The Korean Journal of Pain
    • /
    • 제32권2호
    • /
    • pp.113-119
    • /
    • 2019
  • Background: Discogenic pain is a common cause of disability and is assumed to be a major cause of non-specific low back pain. Various treatment methods have been used for the treatment of discogenic pain. This study was conducted to compare the therapeutic success of radiofrequency (an intradiscal procedure) and laser annuloplasty (both an intradiscal and extradiscal procedure). Methods: This single-center study included 80 patients and followed them for 6 months. Transforaminal laser annuloplasty (TFLA, 37 patients) or intradiscal radiofrequency annuloplasty (IDRA, 43 patients) was performed. The main outcomes included pain scores, determined by the numeric rating scale (NRS), and Oswestry disability index (ODI), at pre-treatment and at post-treatment months 1 and 6. Results: The patients were grouped according to procedure. In all procedures, NRS and ODI scores were significantly decreased over time. Mean post-treatment pain scores at months 1 and 6 were significantly lower (P < 0.01) in both groups, and between-group differences were not significant. The ODI score was also significantly decreased compared with baseline. Among patients undergoing TFLA, 70.3% (n = 26) reported pain relief (NRS scores < 50% of baseline) at post-treatment 6 months, vs. 58.1% (n = 25) of those undergoing IDRA. There were no statistically significant differences between the groups in ODI reduction of > 40%. Conclusions: Our results indicate that annuloplasty is a reasonable treatment option for carefully selected patients with lower back and radicular pain of discogenic origin, and TFLA might be superior to IDRA in patients with discogenic low back pain.

Preliminary study of presumptive intradural-intramedullary intervertebral disc extrusion in 20 dogs

  • Kim, Jaehwan;Kim, Hyoju;Hwang, Jeongyeon;Eom, Kidong
    • Journal of Veterinary Science
    • /
    • 제21권4호
    • /
    • pp.52.1-52.11
    • /
    • 2020
  • Background: Intradural-intramedullary intervertebral disc extrusion (IIVDE) is a rare condition of intervertebral disc disease. However, the diagnosis of IIVDE is challenging because the prognosis and imaging characteristics are poorly characterized. Objectives: We aimed to describe the clinical and imaging characteristics of tentatively diagnosed IIVDE in dogs to assess the prognostic utility of neurological grade and magnetic resonance imaging (MRI) findings. Methods: Twenty dogs were included in this retrospective cohort study. Results: Nonchondrodystrophic breeds (n = 16) were more predisposed than chondrodystrophic breeds. Most dogs showed acute onset of clinical signs. Neurological examination at admission showed predominant non-ambulatory paraparesis (n = 9); paresis (n = 16) was confirmed more frequently than paralysis (n = 4). Follow-up neurological examination results were only available for 11 dogs, ten of whom showed neurological improvement and 8 showed successful outcomes at 1 month. The characteristic MRI findings include thoracic vertebra (T)2 hyperintense, T1 hypointense, intramedullary linear tracts with reduced disc volume, and cleft of the annulus fibrosus. None of the MRI measurements were significantly correlated with neurological grade at admission. Neurological grade did not differ according to the presence of parenchymal hemorrhage, parenchymal contrast enhancement, and meningeal contrast enhancement. Neurological grades at admission showed a statistical correlation with those observed at the 1-month follow-up (r = 0.814, p = 0.02). Conclusions: IIVDE is a rare form of disc extrusion commonly experienced after physical activity or trauma and most frequently affects the cranial-cervical and thoracolumbar regions of nonchondrodystrophic dog breeds. Neurological score at admission emerged as a more useful prognostic indicator than MRI findings in dogs with suspected IIVDE.

2차원적 DBP/PLGA 하이브리드 필름이 디스크 세포의 부착과 증식에 미치는 영향 (Effect of 2-D DBP/PLGA Hybrid Films on Attachment and Proliferation of Intervertebral Disc Cells)

  • 고연경;정재수;김순희;임지예;이종문;김문석;이해방;강길선
    • 폴리머
    • /
    • 제32권2호
    • /
    • pp.109-115
    • /
    • 2008
  • 탈미네랄화된 골분(DBP)은 사이토카인과 같은 다양한 생리활성분자를 가지기 때문에 조직공학분야에서 널리 사용되는 생체재료이다. 본 연구에서는 DBP를 함유한 2차원적 DBP/PLGA 필름이 추간판디스크 세포의 부착, 증식 및 표현형유지에 미치는 영향에 대해 연구하였다. DBP 함량에 따른 DBP/PLGA 필름은 용매증발법으로 제조하였으며 제조된 PLGA 및 DBF/PLGA 필름은 시차주사현미경을 통해 표면을 분석하였다. PLCA 필름은 매끄러운 표면을 가지며, DBF의 함량이 증가할수록 DBP/PLGA 필름의 표면은 거침도가 증가하는 것을 확인하였다. 섬유륜(AF) 및 수핵(NP)세포를 PLGA 및 DBP/PLCA 필름 표면에 파종하여 배양한 후, 세포의 계수 및 SEM 관찰을 통하여 이들의 부착과 증식을 평가하였다. 세포 계수와 SEM 관찰 결과, DBP의 함량이 10 및 20%인 DBP/PLGA 필름에서 높은 초기부착도 및 증식률을 보였다. 세포 계수 결과를 바탕으로 RT-PCR을 통하여 DBF 10%와 20%의 DBP/PLGA 필름에서의 디스크 세포의 특이적 유전자 발현확인 결과, DBF의 함량이 20%인 DBP/PLCA 필름에서 세포의 표현형이 유지되며 지속적인 세포외기질이 발현될 것으로 예상되었다. 따라서 적절한 천연재료의 함량이 세포의 부착과 증식에 더욱 적합하며 이는 조직공학적 디스크 재생의 기초 자료로 사용될 것으로 사료된다.

기관배양을 통한 추간판 재생용 나노파이버 및 온도 감응성 지지체에 대한 검증 (Investigation of Nanofiber and Thermosensitive Scaffold for Intervertebral Disc through Organ Culture)

  • 이용재;신지원;신호준;김찬환;박기동;배진우;서형연;김영직;신정욱
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권4호
    • /
    • pp.512-519
    • /
    • 2007
  • The purpose of this study is to investigate the potential of a novel tissue engineering approach to regenerate intervertebral disc. In this study, thermosensitive scaffold (chitosan-Pluronic hydrogel) and nanofiber were used to replace the nucleus pulposus (NP) and annulus fibrosus of a degenerated intervertebral disc, leading to an eventual regeneration of the disc using the minimally invasive surgical procedure and organ culture. In preliminary study, disc cells were seeded into the scaffolds and cellular responses were assessed by MTT assay and scanning electron microscopy (SEM). Based on these results, we could know that tissue engineered scaffolds might provide favorable environments for the regeneration of tissues. Organ culture was performed in fresh porcine spinal motion segments with endplates on both sides. These spinal motion segments were classified into three groups: control (Intact), injured NP (Defect), and inserting tissue engineered scaffolds (Insert). The specimens were cultivated for 7 days, subsequently structural stability, cell proliferation and morphological changes were evaluated by the relaxation time, quantity of DNA, GAG and histological examination. In these results, inserting group showed higher relaxation time, reduced decrement of DNA contents, and accumulated GAG amount. Consequently, the tissue engineered scaffolds used in this study seen to be a promising base scaffolds for regenerative intervertebral disc due to its capacity to absorb external dynamic loading and the possible ideal environment provided for disc cell growing.