• Title/Summary/Keyword: Annular Flow

Search Result 348, Processing Time 0.026 seconds

Study on the flow inside an annular pipe with a periodic obstacle (주기적인 장애물을 가지는 환형 도관 내의 유동장에 대한 연구)

  • Ahn, Young-Kyoo;Choi, Hyoung-G.;Yong, Ho-Taek
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.209-211
    • /
    • 2008
  • In this paper, a segregated finite element program for the analysis of an axisymmetric steady flow has been developed in order to investigate the flow inside an annular pipe with a periodic obstacle. For the verification of the developed code, a developing pipe flow has been solved and the solution is in a good agreement with the existing results. For the analysis of the flow inside an annular pipe with a periodic obstacle, three types of periodic obstacle are considered. From the present numerical analysis, various physical variables including flow pattern, pressure distribution and residence time are investigated as a preliminary study to the heat transfer analysis of an annular pipe flow with a periodic obstacle.

  • PDF

ESTIMATION OF LOCAL LIQUID FILM THICKNESS IN TWO-PHASE ANNULAR FLOW

  • Lee, Bo-An;Yun, Byong-Jo;Kim, Kyung-Youn;Kim, Sin
    • Nuclear Engineering and Technology
    • /
    • v.44 no.1
    • /
    • pp.71-78
    • /
    • 2012
  • In many semi-empirical analyses of flow boiling heat transfer, an annular flow is often assumed as a model flow and the local liquid film thickness is a key parameter in the analysis. This work considers a simple electrical conductance technique to estimate the local liquid film thickness in two-phase annular flows. In this approach, many electrodes are mounted flush with the inner wall of the pipe. Voltage differences between two neighboring electrodes for concentric annular flows with various liquid film thicknesses are obtained before the main experiments and logged in a look-up table. For an actual application in the annual flow, voltage differences of neighboring electrodes are measured and then corresponding local film thicknesses are determined by the interpolation of the look-up table. Even though the proposed technique is quite simple and straightforward, the numerical and static phantom experiments support its usefulness.

An Experimental Study of The Effects of The Mixing Vane on Air-water Mixed Flow

  • Kim, Soo-Hyung;Baek, Won-Pil;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.331-336
    • /
    • 1996
  • The effects of a mixing vane on air-water mixed flow have been experimentally studied in this work, to investigate the basic mechanisms that the mixing vane affects critical heat flux (CHF). Experiment was performed for various flow rates focusing on bubbly flow and annular flow patterns. Acrylic tube (1.7m long, 11 mm I.D.) and the split vane type mixing vane were used, and ring-type conductance probes were used to measure the liquid film thickness in annular flow. Experimental results show that, (a) bubbly-to slug flow transition and churn-to-annular flow transition occur respectively near the mixing vane compared to the tests without mixing vane, (b) in bubbly flow region, the mixing vane breaks the bubbles into smaller ones and forwards bubbles to the center region of the tube by the centrifugal force, (c) the liquid film thickness in annular flow is decreased near the mixing vane for mass fluxes.

  • PDF

Study on enhancement of evaporating heat transfer in narrow horizontal annular crevices (좁은 수평 환형 Crevice에서의 증발열전달촉진에 관한 연구)

  • Bae, Sang-Cheol;Kim, Jong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.4
    • /
    • pp.1481-1490
    • /
    • 1996
  • This study is intend to improve flow pattern within evaporator, which is low quality and low mass flux, by installing narrow horizontal annular crevice so that enhance heat transfer coefficient. The motive, which made to study heat transfer enhancement by using narrow annular crevice, came from capillary phenomena and pumping force of generating vapor on refrigerant boiling. Tests were run about 5 models of turbulence promoter with CFC-12, in the range of evaporating temperature (15.deg. C), mass flux (50 to 100 kg/m$\^$2/s), heat flux (3.4 to 6.7 kW/m$\^$2/), quality (0.1 to O.5). It is observed that flow pattern within evaporator is changed closely to semi-annular flow or annular flow, of which refrigerant liquid is reached to the upper side of tube by using narrow annular crevice. When the narrow annular crevice is installed in the evaporator tube, local heat transfer coefficient is generally more improved than that of smooth tube. That fact is according to observed result of flow pattern. It is learned that narrow annular crevice has more efficiency at a low mass flux. At the TP-5, enhancement of heat transfer rate is about 170% compare to that of smooth tube on a low mass flux (50 kg/m$\^$2/s), and it is about 134% on a high mass flux (100 kg/M$\^$2/S), so that we know that it is on a very high condition.

The Effect of Annular Slit on a Compressible Spiral Jet Flow (스파이럴 제트 유동에 미치는 환형 슬릿의 영향에 관한 연구)

  • Cho, Wee-Bun;Baek, Seung-Cheul;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2029-2034
    • /
    • 2004
  • Spiral jet is characterized by a wide region of the free vortex flow with a steep axial velocity gradient, while swirl jet is largely governed by the forced vortex flow and has a very low axial velocity at the jet axis. However, detailed generation mechanism of spiral flow components is not well understood, although the spiral jet is extensively applied in a variety of industrial field. In general, it is known that spiral jet is generated by the radial flow injection through an annular slit which is installed at the inlet of a conical convergent nozzle. The present study describes a computational work to investigate the effects of annular slit on the spiral jet. In the present computation, a finite volume scheme is used to solve three dimensional Naver-Stokes equations with RNG ${\kappa}-{\varepsilon}$ turbulent model. The annular slit width and the pressure ratio of the spiral jet are varied to obtain different spiral flows inside the conical convergent nozzle. The present computational results are compared with the previous experimental data. The results obtained obviously show that the annular slit width and the pressure ratio of the spiral jet strongly influence the characteristics of the spiral jets, such as tangential and axial velocities.

  • PDF

Effects of Flow Diretion and Annular Gap Size on the Flow Pattern and Void Distribution in a Vertical Two-Phase Flow(I) - In Case of Upward Flow - (수직이상유에서 유동방향과 동심원관 간극이 유동양식과 보이드분포에 미치는 영향 (I))

  • 손병진;김인석;김문철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.856-866
    • /
    • 1987
  • In the present paper a statistical method using probability density function has been applied to investigate experimentally the flow patterns and fluctuations of time-averaged local void fraction in air-water two-phase mixtures which flow vertically upwards in concentric annuli. This study was carried out using three vertical concentric annuli. The annular test section consists of a lucite outer tube whose inside diameter is 38mm and a stainless steel inner rod. The rod diameter is either 12mm, 16mm or 20mm. The two-phase flow patterns observed in the experiment were bubbly, slug, annular and each transition patterns. It was first demonstrated that the variance, coefficients of skewness and kurtosis calculated from probability density function on time-averaged local void fraction can be used to identify the flow patterns in the annular passage, and the fluctuation of time-averaged local void fraction varies with the radial position in annular gap and the flow pattern.

Dynamic Stability Analysis of Annular Cylindrical Fuel Rod in Axial Flow (축류에 놓인 환형 실린더 연료봉의 동적 안정성 기초해석)

  • Lee, Kang-Hee;Kim, Hyung-Kyu;Yoon, Kyung-Ho;Lee, Young-Ho;Kim, Jae-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.264-267
    • /
    • 2008
  • Dual-cooled fuel with inner and outer flow channel was proposed for high burup, next generation nuclear fuel design. The annular cylinder of dual cooled fuel has higher structural strength compared to the conventional one, but also have concerns about flow induced vibration due to an additional flow of inner channel and the difference of flow velocity in between inner and outer channel. In this study, the dynamic stability of flexible, annular cylinder was evaluated according to the flow variation and compared to the that of the conventional PWR fuel rod. Centrifugal and Coriolis force by the additional flow in the inner channel were added in the dynamic equation of flexible beam in uniform, external, and axial flow. Complex eigenfrequency was calculated by the finite element method. Stability margin of annular cylinder compared to the solid cylinder and change of the dynamic characteristic are presented and discussed as a analysis results.

  • PDF

Thermoelastic solutions for annular disks with arbitrary variable thickness

  • Zenkour, Ashraf M.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.5
    • /
    • pp.515-528
    • /
    • 2006
  • This article presents a unified analytical solution for the analysis of thermal deformations and stresses in elastic annular disks with arbitrary cross-sections of continuously variable thickness. The annular disk is assumed to be under steady heat flow conditions, in which the inner surface of the annular disk is at an initial temperature and the outer surface at zero temperature. The governing second-order differential equation is derived from the basic equations of the thermal annular disks and solved with the aid of some hypergeometric functions. Numerical results for thermal stresses and displacement are given for various annular disks. These disks include annular disks of thickness profiles in the form of general parabolic and exponential functions. Additional annular disks with nonlinearly variable thickness and uniform thickness are also included.

Phenomenological Liquid Film Dryout Model for Upward Flow in Tubes and Annuli (원형 및 환상 채널에 흐르는 수직 상향류의 액막 건조 모델)

  • Hong, Sung-Deok;Chun, Se-Young
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.201-207
    • /
    • 2001
  • We modeled the liquid film dryout(LFD) process for both tube and annulus which have uniformly heated vertical channels. We set phenomenological initial conditions in the model. The initial void fraction on the onset of the annular flow location is derived from the physical chum-to-annular flow criterion with the help of the drift-flux-model. The initial thermodynamic-equilibrium-quality is calculated by iteration with the flow quality to find the onset of the annular-flow location. Present model tends to predict very well at the lower exit quality but under-estimates at the higher exit quality. We found that the prediction error of the present model is gradually bigger as the inlet subcooling approaches near the saturation. We obtained excellent results for both tube and annulus channels as the mean of 0.97 and root-mean-square error of 11% for the number of 3883 experimental data on tubes, and of 0.96 and of 12% for 593 on annuli. The present model extended the applicable range to the relatively low exit quality region than previous LFD models.

  • PDF

Effects of Annular Gap Size on the Flow Pattern and Void Distribution in a Vertical Upward Two-Phase Flow (수직상향 이상류에서 동심원관 간극이 유동양식과 보이드분포에 미치는 영향)

  • Son B. J.;Kim I. S.;Kim M. C.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.16 no.4
    • /
    • pp.383-391
    • /
    • 1987
  • An experimental investigation has been conducted to determine the flow pattern for two-component , two-phase mixtures which flow vertically upwards in concentric annuli based on the measurement for the local void fraction and the distribution of the local void fraction in various radial locations in the annular gap. The annular test section consists of a lucite outer tube whose inside diameter is 38mm and a stainless steel rod, The rod diameter is either :2mm,16mm or 20mm. It is demonstrated that the probability density function of the fluctuations in void fraction may be used as an flow pattern indicator and the local void fraction distribution depends on the flow pattern and radial location in the annular passage.

  • PDF