• Title/Summary/Keyword: Annual ring

Search Result 166, Processing Time 0.022 seconds

Ecological Characteristics of Abies koreana Forest on Seseok in Mt. Jiri (지리산 세석지역 구상나무 임분의 생태적 특성)

  • Cho, Min-Gi;Chung, Jae-Min;Kim, Tae-Woon;Kim, Chung-Yeol;Noh, Il;Moon, Hyun-Shik
    • Journal of Climate Change Research
    • /
    • v.6 no.4
    • /
    • pp.379-388
    • /
    • 2015
  • The purpose of the this study was to provide basic data on reasonable management for Abies koreana in Mt. Jiri through analysis the ecological characteristics of Abies koreana forests on Seseok. Due to low soil pH (4.26), high organic matter (10.5%) and total N (0.32%), the soil properties of A. koreana forest on Seseok are different from those of other forest soil in Korea. According to the result of importance value analysis, A. koreana (70.5) for tree layer, A. koreana (37.6) and Rhododendron schlippenbachii (20.8) for subtree layer and A. koreana (12.6), Sasa borealis (11.5) and Acer pseudosieboldianum (11.2) for shrub layer were high, respectively. The species diversity of Shannon was 0.425 for tree layer, 0.869 for subtree layer and 1.320 for shrub layer. Evenness and dominance for all layers ranged from 0.365 to 0.894 and 0.187 to 0.635, respectively. Height growth according to DBH of A. koreana on Seseok was relative high. Annual mean tree ring growth of A. koreana showed up 1.372, 1.557 and 1.483 mm/yr for small, middle and large diameter tree, respectively. Considering the importance value, distribution of seedling, height growth and ring growth, A. koreana forest on Seseok in Mt. Jiri will be maintained as the major population from now on.

Changes in Cellular Characteristics and Qualities of Matured and Juvenile Wood from Reforested Tree of Pinus koraiensis (잣나무 조림목(造林木)의 조직특성(組織特性)의 변동(變動)과 성열재(成熱材)·미성열재(未成熱材)의 재질(材質))

  • Kang, Sun-Koo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.73-80
    • /
    • 1993
  • Pinus koraiensis is one of the most important reforestation species which had widely been planted around the country. Therefore, there are great research needs on the fundamental properties of wood to extend the frequency of uses and adequate availabilities. Research results on the characteristics of anatomical wood properties and changes are summarized as follows: 1. At a horizontal direction of tree trunk, the tracheid length at outer wood gradually becomes shorter as it reaches to pith. The tracheid length having between 32 and 42 annual rings showed over 2.5 times longer than that of pith, and also its length increases from the bottom to the top of the stem. 2. The tracheid diameters in latewood showed a little fluctuations, and the shortest near to the pith in earlywood. The tracheid diameters in earlywood are more than 2 times those of latewood, and the differences between the mature and juvenile wood in earlywood are less than 10${\mu}m$. 3. The tracheid wall thickness in early wood showed a little fluctuations. On the contrary, tracheid wall thickness in latewood rapidly increases from the pith to the bark. The tracheid wall of mature wood showed 10 to 20% thicker than that of juvenile wood. 4. The fibril angle at the secondary walls of tracheid within an annual ring showed higher degree in earlywood than that of latewood. The highest tracheid fibril angle was observed at around the pith of both earlywood and latewood. Then, fibril angle slowly decreased toward outer wood, and was stabilized after 15 years. 5. Structural boundaries between mature and juvenile wood from Pinus koraiensis are divided by 13 to 19 annual ring and distance of 5 to 8cm from the pith.

  • PDF

The Association of Intra-Annual Cambial Activities of Pinus koraiensis and Chamaecyparis pisifera planted in Mt. Worak with Climatic Factors (월악산에 식재된 잣나무와 화백나무의 형성층 활동과 기후인자와의 관계)

  • Seo, Jeong-Wook;Choi, En-Bi;Ju, Jeong-Deok;Shin, Chang-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.43-52
    • /
    • 2017
  • This study was fulfilled to verify the durations of cambial activity and analyze the associations of degree days and precipitation with the initiation of cambial activity and intra-annual wood formation for Pinus koraiensis and Chamaecyparis pisifera planted at Mt. Worak, respectively, by monitoring of their intra-annual cambial activities. And more, the reason was also analyzed why the DBH of Chamaecyparis pisifera known as planted in the same year could be classified as two groups (CPL: ${\phi}30cm$, CPS: ${\phi}15cm$). The intra-annual cambial activity was monitored using mini-cores (${\phi}2mm$) and they were collected in 2-week interval between April and October. However, between April and May and between middle September and October expected as the initiation and cessation of the cambial activity, respectively, it was fulfilled in 1-week interval. The average number of tree rings for PK (30) was less than CPS (37) and CPL (38), whereas the average ring width of PK (4.12 mm) was wider than CPS (1.84 mm) and CPL (3.97 mm). In the comparison of ring widths between CPL and CPS, CPL was 2.13 mm wider than CPS, however, excepting CPS 1 (0.83 mm), the average ring widths of CPS 2 (2.42 mm) and CPS 3 (2.73 mm) in the last 3 years were close to the average of CPL (2.71 mm). The initiation of cambial activity for PK was between 1 and 21 April, which was 1 week earlier than CPL and CPS (excepting CPS 1) and the cessation was between 1 and 22 September. The longest growing season therefore was 157.3 days (${\pm}3.3$) and it was longer than CPL ($145.7{\pm}6.6days$) and CPS ($148.0{\pm}15.1days$). In CP groups there were wide variations for the cessation of cambial activity and also there were the meaningful linear relationship between the growing seasons and the ring widths (r = 0.69, p < 0.064). The cambial activity in PK was initiated when degree days were between 99 and 134 and in CPS (excepting PCS 1) and CPL between 134 and 200. Excepting CPS 3, the false ring was observed in all samples collected on 21 July when drought stress was high due to low precipitation from June to the beginning of July.

Development of a Tree Ring Measuring Program Using Smartphone-Captured Images (스마트폰 촬영 이미지를 활용한 나이테 검출 및 분석 프로그램 개발)

  • Kim, Dong-Hyeon;Kim, Tae-Lee;Cho, Hyung-Joo;Kim, Dong-Geun
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.4
    • /
    • pp.484-491
    • /
    • 2020
  • In this study, to solve the existing inefficient stem analysis process and expensive equipment cost problems, a method for detecting and analyzing tree rings using smartphone images was proposed and a semi-automated computer program (TRIO, Tree Ring Information) was developed. TRIO can measure the annual ring radius and save the results to Excel. Since TRIO uses smartphone images, the results may vary depending on the quality of the smartphone camera. Therefore, using the Samsung Galaxy S10 and Tap 2, 30 dics images of Pinus rigida were acquired and analyzed, and these were compared with WinDENDROTM. As a result of the study, both Samsung Galaxy S10 and S2 showed significant results with WinDENDROTM, and the R2 value of S10 had a high correlation as 0.976, and RMSE was analyzed as 0.4199, and very similar results were output. The R2 value of S2 was 0.975 and the RMSE was 0.4232, showing no significant difference from S10. Accordingly, the TRIO developed in this study analyzed the annual radius value very similar to WinDENDROTM.

Establishing Local Master Ring-Width Chronologies and Their Utilization for Estimating The Age of Big Old Trees (노거수 수령 추정을 위한 지역별 연륜연대기 구축 및 활용)

  • Oh, Jung-ae;Seo, Jeong-Wook;Kim, Byung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.85-95
    • /
    • 2017
  • This study aimed at more precisely estimating the age of big old trees using dendrochronological method. Gesan-gun in Chungbuk (CBGS), Gurye-gun in Jeonnam (JNGR) and Uljin-gun in Gyeongbuk (GBUJ) were study areas and Zelkova serrata (ZS) and Pinus densiflora (PD) selected as protected trees therein were used as experimental tree species. The increment cores were extracted from 12, 8, and 6 ZSs and 10, 3, and 9 PDs in CBGS, JNGR, and GBUJ, respectively, using an increment borer (${\phi}5.2mm$). In order to clearly distinguish tree-ring boundary, the surface in the transverse section was cut for ZS using a sliding microtome and sanded for PD using a sand paper. Ring widths were measured in the resolution of 0.01 mm. Based on the measurement values, 203-year long (1813-2015) ZS local master tree-ring chronologies were successfully established and 175-year long (1841-2015) ZS local master tree-ring chronology for JNGR was also successfully established. In the case of PD, 154-, 175-, and 250-year long local master tree-ring chronologies for CBGS, JNGR, and GBUJ were successfully established, respectively. In the comparisons between local master tree-ring chronologies, they showed low t-values and Glks. According to the comparisons of the local master tree-ring chronologies with 50-year (1950~2000) average temperature and precipitation distribution maps, the annual variations of local master tree-ring chronologies seem to be determined by not temperature but precipitation. For such cross-dating therefore more local master tree-ring chronologies have to be established at the least based on the distribution map for precipitation.

Structure and Identification of Ancient Wood (I) -Construction Wood of Yi-dynasty m Jeju Province- (고재(古材)의 구조(構造)와 수종식별(樹種識別)(제(第) 1 보(報)) -제주도지방(濟州道地方)에 있어서 조선시대(朝鮮時代)의 목조건축재(木造建築材)-)

  • Park, Sang-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.15-23
    • /
    • 1978
  • This report observed for anatomical structure and identified species of small wood debris collected at Chungi-Hyankyo, Yunbuk-Chung, Jeju-Hyankyo, Teachung-Hyangkyo and Kwanduk-Chung in Jeju province constructed in a central period of Yi-dynasty, and now named as local cultral assets. 1. Sample of Chungi-Hyangkyo is gymnosperm with window-like pit, axial and radial cannal & dentate ray tracheid. This sample with identified with Pinus densiflora or Pinus thunbergii. 2. Samples of Yunbuk-Chung and Jeju-Hyangkyo are diffuse porous wood having small vessels with scalariform perforation plates scattered almost equally in annual ring, possess heterogenus ray parenchyma & banded apotracheal parenchyma. This sample is identified with Distylium racemosum. 3. Sample of Teachung-Hyangkyo is ring porous wood composed of big vessels of pore zone and compound vessels outside pore zone. It also has simple perforation plates, tylosis, homogenlls uniseriate ray parenchyma & diffuse parenchyma This sample is identified with Castanopsis cuspidata. 4. Sample of kwanduk-Chung is ring porous wood composed of big vessels of pore zone and compound vessels outside pore zone. It has simple perforation plates, heterogenus ray parenchyma, crystal, vasicentric parenchyma. This sample is identified with Zelkova serrata.

  • PDF

A STUDY ON THE ARMILLARY SPHERE OF TONGCHEON-UI DESCRIBED BY HONG DAE-YONG (홍대용 통천의의 혼천의 연구)

  • MIHN, BYEONG-HEE;YUN, YONG-HYUN;KIM, SANG HYUK;KI, HO CHUL
    • Publications of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.79-95
    • /
    • 2021
  • This study aims to develop a restoration model of an armillary sphere of Tongcheon-ui (Pan-celestial Armillary Sphere) by referring to the records of Damheonseo (Hong Dae-Yong Anthology) and the artifact of an armillary sphere in the Korean Christian Museum of Soongsil University. Between 1760 and 1762, Hong, Dae-Yong (1731-1783) built Tongcheon-ui, with Na, Kyung-Jeok (1690-1762) designing the basic structure and Ann, Cheo-In (1710-1787) completing the assembly. The model in this study is a spherical body with a diameter of 510 mm. Tongcheon-ui operates the armillary sphere by transmitting the rotational power from the lantern clock. The armillary sphere is constructed in the fashion of a two-layer sphere: the outer one is Yukhab-ui that is fixed; and the inner one, Samsin-ui, is rotated around the polar axis. In the equatorial ring possessed by Samsin-ui, an ecliptic ring and a lunar-path ring are successively fixed and are tilted by 23.5° and 28.5° over the equatorial ring, respectively. A solar miniature attached to a 365-toothed inner gear on the ecliptic ring reproduces the annual motion of the Sun. A lunar miniature installed on a 114-toothed inner gear of the lunar-path ring can also replay the moon's orbital motion and phase change. By the set of 'a ratchet gear, a shaft and a spur gear' installed in the solstice-colure double-ring, the inner gears in the ecliptic ring and lunar-path ring can be rotated in the opposite direction to the rotation of Samsin-ui and then the solar and lunar miniatures can simulate their revolution over the period of a year and a month, respectively. In order to indicate the change of the moon phases, 27 pins were arranged in a uniform circle around the lunar-path ring, and the 29-toothed wheel is fixed under the solar miniature. At the center of the armillary sphere, an earth plate representing a world map is fixed horizontally. Tongcheon-ui is the armillary sphere clock developed by Confucian scholars in the late Joseon Dynasty, and the technical level at which astronomical clocks could be produced at the time is of a high standard.

Management of the Hen Clam, Mactra chinensis Philippi, on the Coast of Kunsan. I. Age and Growth (개량조개 (Mactra chinensis Philippi)의 자원관리I. 연령과 성장)

  • 류동기;김용호
    • The Korean Journal of Malacology
    • /
    • v.17 no.1
    • /
    • pp.13-18
    • /
    • 2001
  • The relationship between shell length and ring radius in each ring group was expressed as a regression line. Therefore, there is a correspondence in each ring formation. Based on the monthly variation of the marginal index (Ml') of the shell, it is assumed that the ring of this species was formed once a year during the period of August to October, and the main period of the annual ring formation was August through September. The relationship between shell length (SL) and total weight (TW) was expressed by the equation TW = 2.2476 $\times$ 10$^{-5}$ SL$^{3.536}$ ($r^2$= 0.90). Shell length (SL) and shell height (SH; mm) were highly correlated with the equation SH = 0.7545 SL - 0.0145 ($r^2$= 0.93). The shell length (SL)-shell width (SW) relation was expressed by the equation SW = 0.5336 SL- 2.4253 ($r^2$= 0.87). Growth curves for shell length and total weight fitted to the von Bertalanffy's equation were expressed as follows: SL$_{t}$ =60.02[1 - e$^{-0.6458(t-0.3895)}$ ], Twt = 43.63[1 - e$^{0.6458(t-0.3895)}$ ]$^{3.536}$ .

  • PDF

Vegetational Structure of Dwarf Bamboo and Its Effects on the Developmental Stages of Deciduous Forests in Clearcutting Sites (벌채적지에서 조릿대 임분의 식생 구조 및 산림식생 발달에 미치는 조릿대의 영향)

  • 차윤정;전승훈
    • Korean Journal of Environment and Ecology
    • /
    • v.16 no.2
    • /
    • pp.149-159
    • /
    • 2002
  • Dwarf bamboo(Sasa borealis) is a dominant understory species in the various forest types in Korea. The objective of this study was to investigate vegetation structure of Sasa borealis and effects of Sasa on the growth of overstory tree species along the forest development after clearcutting. Three representative stand types with and without S. borealis in Baekwoonsan, Chonnam province were selected in 1998 for this study: uncutting stands(natural deciduous forests with overstory vegetation), 1987-cutting stands (11 years after clearcutting), and 1993-cutting stands(5 years after clearcuting). Vegetation type was largely classified into Sasa borealis dominant type and Sasa borealis recessive or absent type. The former composed of four associations including Quercus serrata-Carpinus laxiflora / Sasa borealis community, Cornus controversa-Morus bombysis / Sasa borealis community, Styrax japonica-Styrax obassia / Sasa borealis association, Zelkova serrata / Sasa borealis community. The latter divided into six associations including Quercus serrata / Lindera erythrocarpa community, Cornus controversa / Lindera erythrocarpa community, Quercus serrata / Acer pseudosieboldianum / Deutzia glabrata community, Fraxinus rhynchophylla-Quercus serrata / Lindera erythrocarpa / Euonymus alataus community, Rubus crataegifolius-Hydrangea macrophylla community, Rubus crataegifolius-Lespedeza bicolor community. Distribution of Sasa, borealis by developmental stages of forests showed that in natural stands was dominant understory, but was various pattern in two cutting stands. Mean annual ring growth of Quercus serrata and Carpinus laxiflora during the last 35 years had not been affected by presence of Sasa, based on comparisons in annual ring growth between Sasa-present and Sasa-absent stands. In conclusion, dense crown of Sasa borealis suppressed the invasion of other shrubs or annuals and facilitated later stages of plant succession by promoting growth of shade-tolerant tree species after clear cutting.

A Study on the Physical Properties of Heartwood and Sapwood of Red Pine(Pinus densiflora S. et Z.) Grown in Gangweon - do (강원도산(江原道産) 소나무심변재(心邊材)의 물리적(物理的) 성질(性質)에 관(關)한 연구(硏究))

  • Shim, Chong-Supp;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.88-95
    • /
    • 1982
  • In order to investigate the physical properties of pine wood (Pinus desiflora S. et Z.) grown in Gangweondo this study has been carried out. The properties studied are percentage of latewood portion occupied in each cross section, specific gravity, crushing strength and relationships between them, respectively. The results summarized are as follows: As far as percentage of latewood portion and specific gravity are concerned, no differences between heartwood and sapwood have been seen, however, the crushing strength of the sapwood has shown larger value than that of the heartwood. 2. Width of annual ring have a defined effect on percentage of latewood and crushing strength, but specific gravity is not influenced significantly by width of annual ring. Percentage of latewood and crushing strength increased with decreasing width of annual ring (Tables 2 & 3). 3. Linear relationships between specific gravity and percentage of latewood, crushing strength and percentage of latewood, crushing strength and specific gravity for both heartwood and sapwood of pine have respectively been seen. Furthermore heartwood and sapwood have shown different patterns of variation as the following equations and Figures 1,2 and 3.

  • PDF