• 제목/요약/키워드: Annual precipitation

검색결과 614건 처리시간 0.025초

Possibility of Climate Change and Simulation of Soil Moisture Content on Mt. Hallasan National Park, Chejudo Island, Korea

  • Kim, Eun-Shik;Kim, Young-Sun
    • The Korean Journal of Ecology
    • /
    • 제23권2호
    • /
    • pp.117-123
    • /
    • 2000
  • Changing patterns and the possibility of climate change in the area of Cheiudo island, the southernmost Island in Korea, were analyzed using daily temperature and Precipitation data observed at the Cheiu Regional Meteorological Office from May 1923 to December 1998. A hydrologic simulation model "BROOK" was used to simulate and analyze the dynamics of daily soil moisture content and soil moisture deficit by applying the daily weather data. During the period, significantly increasing pattern was observed in temperature data of both annual and monthly basis, while no significantly changing pattern was observed in precipitation data. During the last 76 years. mean annual temperature was observed to have risen about 1.4$^{\circ}C$, which may show the Possibility of the initiation of climate change on the island whose validity should be tested in future studies after long-term studies on temperature. Based on the simulation, due to increased temperature, significant increase was predicted in evapotranspiration. while no significant decrease was detected in simulated soil moisture content during the period. Changing pattern of annual soil moisture content was markedly different from those of precipitation. In some dominant trees, negative effects of the drought of the late season for the previous year were shown to be statistically significant to radial growth of the tree for the current year. As annual variation of radial growth of trees is mainly affected by the soil moisture content. the information on the dynamics of soil moisture deficit possibly provides us with useful information for the interpretation of tree growth decline on the mountain. mountain.

  • PDF

도시화에 의한 장기 지하수 함양량 변화 (Long-Term Trend of Groundwater Recharge According to Urbanization)

  • 이승현;배상근
    • 한국환경과학회지
    • /
    • 제19권6호
    • /
    • pp.779-785
    • /
    • 2010
  • To solve a problem of water supply on urban areas, groundwater recharge has to be assessed not only for evaluating the possibility of groundwater development but also for identifying a sustainable aquifer system for water resource development. The assessment of groundwater recharge has been challenged since the land use has been changed constantly. In this study, the groundwater recharge and its ratio were assessed from 1961 to 2007 in Su-yeong-gu, Busan, South Korea by analyzing precipitation, land use, and soil characteristics. For land use analysis, the urbanization change was considered. The land use areas for the residential, agricultural, forest, pasture, bare soil, and water in 1975 occupy 18.6 %, 30.0%, 48.8%, 0.1%, 2.0%, and 0.5% of total area, respectively. The land use ratios were sharply changed from 1980 to 1985; the agricultural area was decreased to 18.3%, and the residential area was increased to 15.0%. From 1995 to 2000, the agricultural area was decreased to 5.5%, and the residential area was increased to 5.4%. The annual averages of precipitation, groundwater recharge, and its ratio were 1509.3 mm, 216.0 mm, and 14.3% respectively. The largest amount of the groundwater recharge showed in 1970 as 408.9 mm, comparing to 2138.1 mm of annual rainfall. Also, the greatest ratio of the groundwater recharge was 19.8% in 1984 with 1492.6 mm of annual rainfall. The lowest amount and ratio of the groundwater recharge were 71.9 mm and 8.0% in 1988, relative to 901.5 mm of annual precipitation. As a result, it is concluded that rainfall has increased, whereas groundwater recharge has decreased between 1961 and 2007.

SCS-CN방법을 이용한 평창강 유역의 강수 함양량 선정 (Estimation of Precipitation Recharge in the Pyungchang River Basin Using SCS-CN Method)

  • 이승현;배상근
    • 한국환경과학회지
    • /
    • 제13권12호
    • /
    • pp.1033-1039
    • /
    • 2004
  • The methodology developed by Soil Conservation Service for determination of runoff value from precipitation is applied to estimate the precipitation recharge in the Pyungchang river basin. Two small areas of the basin are selected for this study. The CN values are determined by considering the type of soil, soil cover and land use with the digital map of 1:25,000. Forest covers more than $94{\%}$ of the study area.. The CN values for the study area vary between 47 in the forest area and 94 in the bare soil under AMC 2 condition. The precipitation recharge rate is calculated for the year when the precipitation data is available since 1990. To obtain the infiltration rate, the index of CN and five day antecedent moisture conditions are applied to each precipitation event during the study period. As a result of estimation, the value of precipitation recharge ratio in the study area vary between $15.2{\%}\;and\;35.7{\%}$ for the total precipitation of the year. The average annual precipitation recharge rate is $26.4{\%}\;and\;26.8{\%}$, meaning 377.9mm/year and 397.5mm/year in each basin.

우리나라 기후 재현성을 중심으로 한 GCMs 평가 (GCMs Evaluation Focused on Korean Climate Reproducibility)

  • 최대규;이진희;조덕준;김상단
    • 한국물환경학회지
    • /
    • 제26권3호
    • /
    • pp.482-490
    • /
    • 2010
  • In this study 17 GCMs' simulations of late 20th century climate in Korea are examined. A regionally averaged time series formed by averaging the temperature and precipitation values at all the Korean grid points. In order to compare general circulation models with observations, observed spatially averaged temperature and precipitation is calculated using 24 stations for 1971 to 2000. The annual mean difference between models and observed data are compared. For temperature, most models have a slight cold bias. The models with least bias in annual average temperature are NIES(MIROC3.2 hires), GISS(AOM) and INGV(SXG2005). For precipitation, almost all models have a dry bias, and for some the bias exceeds 50%. Models with lowest bias are NIES(MIROC3.2 hires), CCCma(CGCM3-T47) and MPI-M(ECHAM5-OM). The models' simulated seasonal cycles show that for temperature, CSIRO(Mk3.0) has the best followed by CCCma(CGCM3-T47) and CCCma(CGCM3-T63), and for precipitation, NIES(MIROC3.2 hires) has the best followed by CSIRO(Mk3.0) and CNRM(CM3). In the assessment using Taylor diagram, CCCma(CGCM3-T47) ranks the best for temperature, and NIES(MIROC3.2 hires) ranks the best for precipitation.

마을 단위 AWS 구축의 필요성 및 적용사례 소개 (Introduction for the Necessity and Application Example of the Village-based AWS)

  • 조원기;강동환;김문수;신인규;김현구
    • 한국환경과학회지
    • /
    • 제29권10호
    • /
    • pp.1003-1010
    • /
    • 2020
  • In this study, the necessity for a village unit Automatic Weather System (AWS) was suggested to obtain correct agricultural weather information by comparing the data of AWS of the weather station with the data of AWS installed in agricultural villages 7 km away. The comparison sites are Hyogyo-ri and Hongseong weather station. The seasonal and monthly averaged and cumulative values of data were calculated and compared. The annual time series and correlation was analyzed to determine the tendency of variation in AWS data. The average values of temperature, relative humidity and wind speed were not much different in comparison with each season. The difference in precipitation was ranged from 13.2 to 91.1 mm. The difference in monthly precipitation ranged from 1.2 to 75.4 mm. The correlation coefficient between temperature, humidity and wind speed was ranged from 0.81 to 0.99 and it of temperature was the highest. The correlation coefficient of precipitation was 0.63 and the lowest among the observed elements. Through this study, precipitation at the weather station and village unit area showed the low correlation and the difference for a quantitative comparison, while the elements excluding precipitation showed the high correlation and the similar annual variation pattern.

미계측 결측 강수자료 보완을 위한 선형계획법의 검정 (A Certification of Linear Programming Method for Estimating Missing Precipitation Values Ungauged)

  • 유주환
    • 한국수자원학회논문집
    • /
    • 제43권3호
    • /
    • pp.257-264
    • /
    • 2010
  • 강수량을 이용해 수문분석 할 경우 강수 자료의 양과 연속성은 분석의 신뢰성에 큰 영향을 미칠 수 있다. 따라서 강수 자료가 짧거나 기계 고장 등으로 인하여 결측된 경우에 강수 자료기간을 늘리거나 결측 자료를 보완하는 것은 매우 기본적인 과정이다. 이에 본 연구에서는 결측 강수량을 보완하기 위해서 적용되는 자료구동(Data-driven) 방법인 선형계획법을 많이 사용되는 7개 기법을 비교 분석하고 우수성을 검정한다. 이를 위해서 적용한 자료는 한강 유역 내에 있는 기상청 관할 관측소 중에 미계측 기간 15년을 포함하는 철원 관측소와 5개 주변 관측소의 17년간 강수량 자료이다. 그리고 검정된 방법을 적용하여 철원 관측소의 미계측 강수량을 보완하고 한강 유역의 32년간 유역 평균 강수량을 산출한다.

분포형 물수지 모델(WetSpass-M)을 이용한 삽교천 상류 유역에서의 월별 지하수 함양량 산정 (Evaluation of Groundwater Recharge using a Distributed Water Balance Model (WetSpass-M model) for the Sapgyo-cheon Upstream Basin)

  • 안효원;하규철
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제26권6호
    • /
    • pp.47-64
    • /
    • 2021
  • In this study, the annual and monthly groundwater recharge for the Sapgyo-cheon upstream basin in Chungnam Province was evaluated by water balance analysis utilizing WetSpass-M model. The modeling input data such as topography, climate parameters, LAI (Leaf Area Index), land use, and soil characteristics were established using ArcGIS, QGIS, and Python programs. The results showed that the annual average groundwater recharge in 2001 - 2020 was 251 mm, while the monthly groundwater recharge significantly varied over time, fluctuating between 1 and 47 mm. The variation was high in summer, and relatively low in winter. Variation in groundwater recharge was the largest in July in which precipitation was heavily concentrated, and the variation was closely associated with several factors including the total amount of precipitation, the number of days of the precipitation, and the daily average precipitation. This suggests the extent of groundwater recharge is greatly influenced not only by quantity of precipitation but also the precipitation pattern. Since climate condition has a profound effect on the monthly groundwater recharge, evaluation of monthly groundwater recharge need to be carried out by considering both seasonal and regional variability for better groundwater usage and management. In addition, the mathematical tools for groundwater recharge analysis need to be improved for more accurate prediction of groundwater recharge.

통계적 상세화 기법을 통한 기후변화기반 지속시간별 연최대 대표 강우시나리오 생산기법 소개 (Introduction to the production procedure of representative annual maximum precipitation scenario for different durations based on climate change with statistical downscaling approaches)

  • 이태삼
    • 한국수자원학회논문집
    • /
    • 제51권spc1호
    • /
    • pp.1057-1066
    • /
    • 2018
  • 기후변화는 홍수의 가장 큰 원인이 되는 극치강우의 빈도와 크기에 매우 큰 영향을 미치고 있다. 특히, 우리나라에서 발생하는 대규모 재해는 강우에 의한 홍수피해가 대부분을 차지하고 있다. 이러한 홍수피해는 기후변화에 의한 극한강우의 발생 빈도가 높아짐에 따라 새로운 재해양상으로 전개되고 있다. 하지만, 미래 기후변화 시나리오 자료는 해상도의 한계로 인하여 중소규모 하천 및 도시유역에 요구되는 수준의 자료 수집이 불가능한 상태이다. 이러한 문제점을 개선하기 위하여 본 연구에서는 전지구모형에서 생산된 기후변화 시나리오에 대해서 여러 단계의 통계적 상세화 기법을 통하여 우리나라 전역에 대하여 미래 시나리오에 대한 빈도해석이 가능하도록 각 지점의 특성에 따라 시간적으로 상세화하기 위해 개발된 방법 및 과정을 소개하였다. 이를 통해, 시간상세화 자료를 토대로 미래 강우에 대한 빈도해석과 기후변화에 따른 방재성능 목표강우량을 산정하는데 활용할 수 있도록 하였다.

기후변화에 따른 강수 특성 변화 분석을 위한 대규모 기후 앙상블 모의자료 적용 (Application of the Large-scale Climate Ensemble Simulations to Analysis on Changes of Precipitation Trend Caused by Global Climate Change)

  • 김영규;손민우
    • 대기
    • /
    • 제32권1호
    • /
    • pp.1-15
    • /
    • 2022
  • Recently, Japan's Meteorological Research Institute presented the d4PDF database (Database for Policy Decision-Making for Future Climate Change, d4PDF) through large-scale climate ensemble simulations to overcome uncertainty arising from variability when the general circulation model represents extreme-scale precipitation. In this study, the change of precipitation characteristics between the historical and future climate conditions in the Yongdam-dam basin was analyzed using the d4PDF data. The result shows that annual mean precipitation and seasonal mean precipitation increased by more than 10% in future climate conditions. This study also performed an analysis on the change of the return period rainfall. The annual maximum daily rainfall was extracted for each climatic condition, and the rainfall with each return period was estimated. In this process, we represent the extreme-scale rainfall corresponding to a very long return period without any statistical model and method as the d4PDF provides rainfall data during 3,000 years for historical climate conditions and during 5,400 years for future climate conditions. The rainfall with a 50-year return period under future climate conditions exceeded the rainfall with a 100-year return period under historical climate conditions. Consequently, in future climate conditions, the magnitude of rainfall increased at the same return period and, the return period decreased at the same magnitude of rainfall. In this study, by using the d4PDF data, it was possible to analyze the change in extreme magnitude of rainfall.

우리나라의 연 강수량, 계절 강수량 및 월 강수량의 확률분포형 결정 (The Determination of Probability Distributions of Annual, Seasonal and Monthly Precipitation in Korea)

  • 김동엽;이상호;홍영주;이은재;임상준
    • 한국농림기상학회지
    • /
    • 제12권2호
    • /
    • pp.83-94
    • /
    • 2010
  • 본 연구의 목적은 우리나라의 연 강수량, 계절 강수 량 그리고 월 강수량의 최적 확률분포형을 선정하는 것이다. 이를 위해서 전국 32개의 강우 관측소에서 얻은 자료에 대하여 L-모멘트 비 다이어그램과 평균가중거리 값을 이용하여 각 강수량별 최적 확률분포를 산정하였으며, 최종적으로 선정된 최적 확률분포형을 관측 지점별로 적합도 검정을 실시하였다. 그 결과, 연강수량에서는 3변수 Weibull 분포(W3), 봄과 가을에는 3변수 대수정규분포(LN3), 여름과 겨울에는 일반화된 극치분포(GEV)가 관측값에 가장 잘 적합하는 것으로 나타났다. 또한, 월 강수량에서는 1월은 LN3, 2월과 7월은 W3, 3월은 2변수 Weibull 분포(W2), 4월, 9월, 10월, 11월은 일반화된 Pareto 분포(GPA), 5월과 6월은 GEV, 그리고 8월과 12월은 log-Pearson type III 분포(LP3)가 가장 잘 적합하였다. 하지만, 최적 확률분포형의 지점별 적합도 검정의 결과, 1월, 4월, 9월, 10월, 11월의 GPA와 LN3에 대한 기각율이 확률 분포의 매개변수 추정에서의 오류와 상대적으로 높은 AWD 값으로 인하여 매우 높게 나타났다. 한편, 23개 관측소의 자료를 추가하여 분석해본 결과 기존의 32개 의 관측소 자료를 이용한 것과 큰 차이를 나타내지 않았다. 종합적으로 보다 적합한 확률분포형을 선정하기 위해서는 더 장기간의 표본자료를 이용한 추가적인 연구가 필요할 것으로 판단된다.