• 제목/요약/키워드: Annual Exposure Dose

검색결과 115건 처리시간 0.021초

가공제품에 대한 생활주변방사선 실태조사 자료를 활용한 통계분석 (Statistical Analysis Using Living Radiation Survey Data on Processed Products)

  • 최경호;조정근
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제43권2호
    • /
    • pp.123-128
    • /
    • 2020
  • Radiation Following the 2011 Fukushima nuclear accident in Japan, public interest and anxiety about radiation safety increased, and vague anxiety about commonly exposed living radiation was generated. The Atomic Energy Safety Commission has been conducting a survey of processed products that advertise "negative ions" and "far-infrared" emissions under the Living Radiation Safety Management Act. In this study, in-depth analysis was performed from a statistical point of view using the measurement data presented in the Nuclear Safety Committee's actual survey analysis report as secondary data. As a result, there was a statistically significant difference (p<0.005) between latex and civil affairs products. There were also statistically significant differences (p<0.05) in the results of testing whether there were significant differences in the annual exposure dose between groups after categorizing 71 civil products, including radon beds, into bed, bedding, and living and other categories. The correlation analysis results also confirm that, as is commonly known, the annual doses received from processed products are associated with radon derived from U-238 and Th-232.

경주 중·저준위방사성폐기물 처분시설의 방폐물검사건물에서 해체 방사성폐기물 대상 방사선작업종사자의 피폭선량 평가 및 작업조건 도출 (The Assessment of Exposure Dose of Radiation Workers for Decommissioning Waste in the Radioactive Waste Inspection Building of Low and Intermediate-Level Radioactive Waste Disposal Facility)

  • 김린아;도호석;김태만;조천형
    • 방사성폐기물학회지
    • /
    • 제18권2_spc호
    • /
    • pp.317-325
    • /
    • 2020
  • 한국원자력환경공단은 처분시설 내 1단계 인수·저장구역의 인수검사 공간 및 드럼 취급 공간 부족에 대한 문제를 해결하기 위하여 방폐물검사건물을 건설하여 저장·처리능력을 확충할 예정이다. 본 연구에서는 MCNP 코드를 이용하여 방폐물검사건물 내 저장구역에서 취급하는 해체 방사성폐기물 대상 신형처분용기를 대상으로 작업종사자의 피폭선량을 평가하였다. 평가결과, 시설 내 저장 가능한 최대 용기 개수(304개)와 방사선작업에 대한 연간 예상 작업시간(약 306시간)에 대하여 연간 집단선량은 총 84.8 man-mSv로 계산되었다. 시설 내 총 304개의 신형처분용기(소형/중형 타입)가 저장 완료된 시점에서 인수검사, 처분검사를 위한 작업종사자의 투입인력은 총 25명, 작업종사자 당 예상피폭선량은 연평균 3.39 mSv로 산출되었다. 소형용기 취급 시 작업종사자의 고방사선량 작업에 따른 작업효율과 방사선적 안전성 확보를 위해서는 콘크리트 라이너의 두께를 증가시키는 추가적인 차폐가 필요할 것으로 평가되었다. 향후 본 연구를 바탕으로 실측기반의 해체폐기물의 선원항과 특성을 활용하여 방사선작업 당 작업시간 및 투입인력을 산출함으로써 작업종사자의 최적의 방사선작업조건을 도출할 수 있을 것으로 사료된다.

원자력안전법에 대한 방사선학과 학생들의 학습권 보장에 관한 연구 (A Study on the Guarantee of Learning Rights of Radiology Students in Nuclear Safety Act)

  • 이보우
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제45권2호
    • /
    • pp.159-164
    • /
    • 2022
  • The study developed a radiation dose measurement program in the radiology laboratory to measure how much exposure the students are exposed to during the radiology class, to request for the improvement and the revision of the current Nuclear Safety Act. The experimental program is shown in the following figure, and experiments were conducted to determine the degree of radiation exposure in the control room with a lead gown at a distance of 1 m, 2 m, and 1 m, and in a control room with a radiographic lead glass wall. The duration of the experiment was 3 months from April to June, when radiation imaging practice classes were conducted, and 128 hours of imaging practice per month were conducted. In order to find out the dose of radiation dose during radiology imaging practice class, the experiment was carried out from April to June for 3 months, and according to the program, the results of exposure dose were 0.34 mSv at 1 m distance, 0.01 mSv at shielding of lead gown at 1 m distance, 0.16 mSv at 2 m distance, and 0.01 mSv at control room with radiation lead glass wall. The exposure dose from the test results was much below the annual general public limit dose of 1 mSv. The restriction on the operation of the radiation equipment in the practice of the students is a regulation that infringes the right of students to learn, and amendments or exemptions of Nuclear Safety Act should be enacted to ensure that it does not violate the fundamental right to learn for students in radiology.

Public Exposure to Natural Radiation and the Associated Increased Risk of Lung Cancer in the Betare-Oya Gold Mining Areas, Eastern Cameroon

  • Joseph Emmanuel Ndjana Nkoulou II;Louis Ngoa Engola;Guy Blanchard Dallou;Saidou;Daniel Bongue;Masahiro Hosoda;Moise Godefroy Kwato Njock;Shinji Tokonami
    • Journal of Radiation Protection and Research
    • /
    • 제48권2호
    • /
    • pp.59-67
    • /
    • 2023
  • Background: This study aims to reevaluate natural radiation exposure, following up on our previous study conducted in 2019, and to assess the associated risk of lung cancer to the public residing in the gold mining areas of Betare-Oya, east Cameroon, and its vicinity. Materials and Methods: Gamma-ray spectra collected using a 7.62 cm×7.62 cm in NaI(Tl) scintillation spectrometer during a car-borne survey, in situ measurements and laboratory measurements performed in previous studies were used to determine the outdoor absorbed dose rate in air to evaluate the annual external dose inhaled by the public. For determining internal exposure, radon gas concentrations were measured and used to estimate the inhalation dose while considering the inhalation of radon and its decay products. Results and Discussion: The mean value of the laboratory-measured outdoor gamma dose rate was 47 nGy/hr, which agrees with our previous results (44 nGy/hr) recorded through direct measurements (in situ and car-borne survey). The resulting annual external dose (0.29±0.09 mSv/yr) obtained is similar to that of the previous study (0.33±0.03 mSv/yr). The total inhalation dose resulting from radon isotopes and their decay products ranged between 1.96 and 9.63 mSv/yr with an arithmetic mean of 3.95±1.65 mSv/yr. The resulting excess lung cancer risk was estimated; it ranged from 62 to 216 excess deaths per million persons per year (MPY), 81 to 243 excess deaths per MPY, or 135 excess deaths per MPY, based on whether risk factors reported by the U.S. Environmental Protection Agency, United Nations Scientific Committee on the effects of Atomic Radiation, or International Commission on Radiological Protection were used, respectively. These values are more than double the world average values reported by the same agencies. Conclusion: There is an elevated level of risk of lung cancer from indoor radon in locations close to the Betare-Oya gold mining region in east Cameroon. Therefore, educating the public on the harmful effects of radon exposure and considering some remedial actions for protection against radon and its progenies is necessary.

A Study on the Isodose Distribution in a Vascular Characterization Room

  • Choi, Young;Kang, Byung-Sam;Min, Jung-Whan
    • 대한디지털의료영상학회논문지
    • /
    • 제13권1호
    • /
    • pp.7-11
    • /
    • 2011
  • As applications of radiation grow wider from use in the early detection of lesions and preventive diagnosis purposes to the treatment of diseases, the possibilities for patients and working professionals to be exposed to radiation are becoming greater than ever. This can not only directly bring about an increase in patient's individual radiation exposure, but also brings about an increase in the annual radiation dose of working professionals. Therefore, research and countermeasures to reduce radiation dosage are required. In this study, space dosimetry has been divided into two separate measuments with an understanding of the increasing number of angiography procedures: front perspective and side perspective. According to the results of the isodose curve, a way to minimize radiation exposure in working professionals has been suggested. This was made possible by workers through awareness of suitable working positions.

  • PDF

대학 내 학습공간과 공동 생활공간에 대한 실내 라돈 농도 측정과 유효선량 산출 (Indoor Radon Levels and Effective Dose Estimation in Learning and Common Living Space of University)

  • 김정수
    • 한국방사선학회논문지
    • /
    • 제12권3호
    • /
    • pp.329-334
    • /
    • 2018
  • 라돈은 자연방사성원소로 호흡을 통해 인체에 피폭된다. 본 연구에서는 2017년 6월 1일부터 2017년 8월 28일까지 3개월 동안 A대학의 8개 건축물에 대해 실내 라돈농도를 측정하여 비교하였고, 연간 유효선량을 도출하였다. 본 연구에서 A대학의 건축물 Hall G와 Hall F의 라돈농도는 각각 $81Bq/m^3$, $14Bq/m^3$로 나타났으며, 전체 조사 건축물의 평균 실내 라돈농도는 $41.63Bq/m^3$로 나타났다. 대학 내 학습공간과 생활공간에 대한 연간 유효선량 환산치의 평균은 0.40 mSv/y이며 최대 연간 유효선량은 0.78 mSv/y, 최소 연간 유효선량은 0.13 mSv/y로 나타났다. 학교는 학생들이 오랜 시간 머무르는 공간이므로 건축물에 대한 적절한 환기와 관리를 통해 실내라돈 농도를 낮추는 것이 라돈에 대한 자연방사선 피폭을 낮추는 방법이다.

모나자이트 취급공정에서의 라돈 및 토론 노출 특성 (Characteristics of Internal and External Exposure of Radon and Thoron in Process Handling Monazite)

  • 정은교
    • 한국산업보건학회지
    • /
    • 제29권2호
    • /
    • pp.167-175
    • /
    • 2019
  • Objectives: The purpose of this study was to evaluate airborne radon and thoron levels and estimate the effective doses of workers who made household goods and mattresses using monazite. Methods: Airborne radon and thoron concentrations were measured using continuous monitors (Rad7, Durridge Company Inc., USA). Radon and thoron concentrations in the air were converted to radon doses using the dose conversion factor recommended by the Nuclear Safety and Security Commission in Korea. External exposure to gamma rays was measured at the chest height of a worker from the source using real-time radiation instruments, a survey meter (RadiagemTM 2000, Canberra Industries, Inc., USA), and an ion chamber (OD-01 Hx, STEP Co., Germany). Results: When using monazite, the average concentration range of radon was $13.1-97.8Bq/m^3$ and thoron was $210.1-841.4Bq/m^3$. When monazite was not used, the average concentration range of radon was $2.6-10.8Bq/m^3$ and the maximum was $1.7-66.2Bq/m^3$. Since monazite has a higher content of thorium than uranium, the effects of thoron should be considered. The effective doses of radon and thoron as calculated by the dose conversion factor based on ICRP 115 were 0.26 mSv/yr and 0.76 mSv/yr, respectively, at their maximum values. The external radiation dose rate was $6.7{\mu}Sv/hr$ at chest height and the effective dose was 4.3 mSv/yr at the maximum. Conclusions: Regardless of the use of monazite, the total annual effective doses due to internal and external exposure were 0.03-4.42 mSv/yr. Exposures to levels higher than this value are indicated if dose conversion factors based on the recently published ICRP 137 are applied.

Radiation Exposure Reduction in APR1400

  • Bae, C.J.;Hwang, H.R.;Matteson, D.M.
    • Journal of Radiation Protection and Research
    • /
    • 제28권2호
    • /
    • pp.127-135
    • /
    • 2003
  • The primary contributors to the total occupational radiation exposure in operating nuclear power plants are operation and maintenance activities doting refueling outages. The Advanced Power Reactor 1400 (APR1400) includes a number of design improvements and plans to utilize advanced maintenance methods and robotics to minimize the annual collective dose. The major radiation exposure reduction features implemented in APR1400 are a permanent refueling pool seal, quick opening transfer tube blind flange, improved hydrogen peroxide injection at shutdown, improved permanent steam generator work platforms, and more effective temporary shielding. The estimated average annual occupational radiation exposure for APR1400 based on the reference plant experience and an engineering judgment is determined to be in the order of 0.4 man-Sv, which is well within the design goal of 1 man-Sv. The basis of this average annual occupational radiation exposure estimation is an eighteen (18) month fuel cycle with maintenance performed to steam generators and reactor coolant pumps during refueling outage. The outage duration is assumed to be 28 days. The outage work is to be performed on a 24 hour per day basis, seven (7) days a week with overlapping twelve (12) hour work shifts. The occupational radiation exposure for APR1400 is also determined by an alternate method which consists of estimating radiation exposures expected for the major activities during the refueling outage. The major outage activities that cause the majority of the total radiation exposure during refueling outage such as fuel handling, reactor coolant pump maintenance, steam generator inspection and maintenance, reactor vessel head area maintenance, decontamination, and ICI & instrumentation maintenance activities are evaluated at a task level. The calculated value using this method is in close agreement with the value of 0.4 man-Sv, that has been determined based on the experience aid engineering judgement. Therefore, with the As Low As Reasonably Achievable (ALARA) advanced design features incorporated in the design, APR1400 design is to meet its design goal with sufficient margin, that is, more than a factor of two (2), if operated on art eighteen (18) month fuel cycle.

Exposure of the Population in the United States to Ionizing Radiation

  • Carter Melvin W.;Oliver Robert W.
    • Journal of Radiation Protection and Research
    • /
    • 제12권2호
    • /
    • pp.37-50
    • /
    • 1987
  • The exposure of the population in the United States to ionizing radiation has recently been evaluated by the National Council on Radiation Protection and Measurements (NCRP). This was done by constituting six organizational groups to address various phases of the work and the results of this work are summarized in this article. The article is based on the report, by the same title, which is scheduled for publication by the NCRP in September, 1987. The six organizational groups are titled Radiation Exposure from Consumer Products, Natural Background Radiation, Radiation Associated with Medical Examinations, Radiation Received by Radiation Employees, Public Exposure from Nuclear Power, and Exposure from Miscellaneous Environmental Sources. These titles are descriptive of the subject areas covered by each of these separate groups. The data evaluated are for the years 1977-1984 with the majority of the data being for the period 1980-1982. Summary information is presented and discussed for the number of people exposed to given sources, the effective dose equivalent, the average effective dose equivalent to the U.S. population, and the genetically significant dose equivalent. The average annual effective dose equivalent from all sources to the U.S. population is approximately 3.6 mSv (360 mrem). Exposures to natural sources make the largest contribution to this total. Radon and radon decay products contribute 2.0 mSv (200 mrem) whereas the other naturally occurring radionuclides contribute 1.0 mSv (100 mrem). Among man-made or enhanced sources, medical exposures make the largest additional contributions, namely 0.39 mSv (39 mrem) for diagnosis and 0.14 mSv (14 mrem) for nuclear medicine. It was not possible to evaluate exposures for therapy. Most of the other sources of population exposure, including nuclear power and consumer products, are minor. A possible exception would be the use of tobacco products. These exposures are discussed in relation to a negligible individual risk level of $10{\mu}Sv/y$ (1 mrem/y). The NCRP considers exposures below the negligible individual risk level as trivial and as such should be dismissed.

  • PDF

Level of radiation dose in university hospital non-insured private health screening programs in Korea

  • Lee, Yun-Keun
    • Environmental Analysis Health and Toxicology
    • /
    • 제31권
    • /
    • pp.7.1-7.6
    • /
    • 2016
  • Objectives The aim of this study is to evaluate radiation exposure resulting from the comprehensive health examinations of selected university hospital programs and to present basic data for research and management strategies on the health effects of medical radiation exposure. Methods Radiation-based diagnostic studies of the comprehensive health examination programs of ten university hospitals in Seoul, Korea, as introduced in their websites, were analyzed. The medical radiation studies of the programs were reviewed by radiologists. Only the effective doses of the basic studies were included in the analysis. The optional studies of the programs were excluded. Results Among the 190 comprehensive health examination programs, 132 programs (69.5%) included computed tomography studies, with an average of 1.4 scans. The average effective dose of radiation by program was 3.62 mSv for an intensive program for specific diseases; 11.12 mSv for an intensive program for cancer; 18.14 mSv for a premium program; and 24.08 mSv for an overnight program. A higher cost of a programs was linked to a higher effective dose (r=0.812). The effective doses of the examination programs for the same purposes differed by as much as 2.1 times by hospital. Inclusion of positron emission tomography-computed tomography was the most critical factor in determining the level of effective dose. Conclusions It was found that radiation exposure dose from comprehensive health exam programs targeted for an asymptomatic, healthy public reached between 3.6 and 24 times the annual dose limit for the general public. Relevant management policies at the national level should be provided to minimize medical radiation exposure.