• Title/Summary/Keyword: Ann

Search Result 2,352, Processing Time 0.032 seconds

Landslide Susceptibility Analysis in Jeju Using Artificial Neural Network(ANN) and GIS (인공신경망기법과 GIS를 이용한 제주도 산사태 취약성분석)

  • Quan, He-Chun;Lee, Byung-Gul;Cho, Eun-Il
    • Journal of Environmental Science International
    • /
    • v.17 no.6
    • /
    • pp.679-687
    • /
    • 2008
  • In this study, we implemented landslide distribution of Jeju Island using ANN and GIS, respectively. To do this, we first get the counter line from 1:2,5000 digital map and use this counter line to make the DEM. for the evaluate the land slide susceptibility. Next, we abstracted slop map and aspect map from the DEM and get the land use map using ISODATA classification method from Landsat 7 images. In the computation processes of landslide analysis, we make the class to the soil map, tree diameter map, Isohyet map, geological map and so on. Finally, we applied the ANN method to the landslide one and calculated its weighted values. GIS results can be calculated by using Acrview program and produced Jeju landslide susceptibility map by usign Weighted Overlay method. Based on our results, we found the relatively weak points of landslide ware concentrated to the top of Halla mountains.

Estimation of compression strength of polypropylene fibre reinforced concrete using artificial neural networks

  • Erdem, R. Tugrul;Kantar, Erkan;Gucuyen, Engin;Anil, Ozgur
    • Computers and Concrete
    • /
    • v.12 no.5
    • /
    • pp.613-625
    • /
    • 2013
  • In this study, Artificial Neural Networks (ANN) analysis is used to predict the compression strength of polypropylene fibre mixed concrete. Polypropylene fibre admixture increases the compression strength of concrete to a certain extent according to mix proportion. This proportion and homogenous distribution are important parameters on compression strength. Determination of compression strength of fibre mixed concrete is significant due to the veridicality of capacity calculations. Plenty of experiments shall be completed to state the compression strength of concrete which have different fibre admixture. In each case, it is known that performing the laboratory experiments is costly and time-consuming. Therefore, ANN analysis is used to predict the 7 and 28 days of compression strength values. For this purpose, 156 test specimens are produced that have 26 different types of fibre admixture. While the results of 120 specimens are used for training process, 36 of them are separated for test process in ANN analysis to determine the validity of experimental results. Finally, it is seen that ANN analysis predicts the compression strength of concrete successfully.

Artificial neural network calculations for a receding contact problem

  • Yaylaci, Ecren Uzun;Yaylaci, Murat;Olmez, Hasan;Birinci, Ahmet
    • Computers and Concrete
    • /
    • v.25 no.6
    • /
    • pp.551-563
    • /
    • 2020
  • This paper investigates the artificial neural network (ANN) to predict the dimensionless parameters for the maximum contact pressures and contact areas of a contact problem. Firstly, the problem is formulated and solved theoretically by using Theory of Elasticity and Integral Transform Technique. Secondly, the contact problem has been extended based on the ANN. The multilayer perceptron (MLP) with three-layer was used to calculate the contact distances. External load, distance between the two quarter planes, layer heights and material properties were created by giving examples of different values were used at the training and test stages of ANN. Program code was rewritten in C++. Different types of network structures were used in the training process. The accuracy of the trained neural networks for the case was tested using 173 new data which were generated via theoretical solutions so as to determine the best network model. As a result, minimum deviation value (difference between theoretical and C++ ANN results) of was obtained for the network model. Theoretical results were compared with artificial neural network results and well agreements between them were achieved.

Prediction of Retention Time for PAH Molecule in HPLC (고속액체 크로마토그래피에서 PAH분자의 구조에 따른 용리시간 예측)

  • Kim, Young-Gu
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.2
    • /
    • pp.102-108
    • /
    • 2000
  • Relative retention times (RRTs) of RAH molecules in HPLC are trained and predicted intesting sets using a multiple linear regression (NLR) and an artificial neural network (ANN). The maindescriptors in QSRR are molecular connectivity ($^1X_v,\;^2X_v$), the length-to-breadth ratios (L/B), and molecular dipole moment(D). L/B which is related with slot model is a good descripter in ANN, but isn't in MLR. Varainces which show the accuracy of prediction times in testing sets are 0.0099, 0.0114 for ANN and MLR, respectively. It was shown that ANN can exceed the MLR in prediction accuracy.

  • PDF

Optimized Neural Network Weights and Biases Using Particle Swarm Optimization Algorithm for Prediction Applications

  • Ahmadzadeh, Ezat;Lee, Jieun;Moon, Inkyu
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1406-1420
    • /
    • 2017
  • Artificial neural networks (ANNs) play an important role in the fields of function approximation, prediction, and classification. ANN performance is critically dependent on the input parameters, including the number of neurons in each layer, and the optimal values of weights and biases assigned to each neuron. In this study, we apply the particle swarm optimization method, a popular optimization algorithm for determining the optimal values of weights and biases for every neuron in different layers of the ANN. Several regression models, including general linear regression, Fourier regression, smoothing spline, and polynomial regression, are conducted to evaluate the proposed method's prediction power compared to multiple linear regression (MLR) methods. In addition, residual analysis is conducted to evaluate the optimized ANN accuracy for both training and test datasets. The experimental results demonstrate that the proposed method can effectively determine optimal values for neuron weights and biases, and high accuracy results are obtained for prediction applications. Evaluations of the proposed method reveal that it can be used for prediction and estimation purposes, with a high accuracy ratio, and the designed model provides a reliable technique for optimization. The simulation results show that the optimized ANN exhibits superior performance to MLR for prediction purposes.

Sensorless Vector Control of Induction Motor by Artificial Neural Network (인공 신경망에 의한 유도전동기의 센서리스 벡터제어)

  • Jung, Byung-Jin;Ko, Jae-Sub;Choi, Jung-Sik;Kim, Do-Yeon;Park, Ki-Tae;Choi, Jung-Hoon;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.307-312
    • /
    • 2007
  • The paper is proposed artificial neural network(ANN) sensorless control of induction motor drive with fuzzy learning control-fuzzy neural network(FLC-FNN) controller. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed speed control of induction motor using FLC-FNN and estimation of speed using ANN controller The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The proposed control algorithm is applied to induction motor drive system controlled FLC-FNN and ANN controller, Also, this paper is proposed the analysis results to verify the effectiveness of the FLC-FNN and ANN controller.

  • PDF

Landslide Susceptibility Analysis in Baekdu Mountain Area Using ANN and AHP Method

  • Quan, Hechun;Moon, Hongduk;Jin, Guangri;Park, Sungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.12
    • /
    • pp.79-85
    • /
    • 2014
  • To analyze the landslide susceptibility in Baekdu mountain area in china, we get two susceptibility maps using AcrView software through weighted overlay GIS (Geographic Information System) method in this paper. To assess the landslide susceptibility, five factors which affect the landslide occurrence were selected as: slope, aspect, soil type, geological type, and land use. The weight value and rating value of each factor were calculated by the two different methods of AHP (Analytic Hierarchy Process) and ANN (Artificial Neural Network). Then, the weight and rating value was used to obtain the susceptibility maps. Finally, the susceptibility map shows that the very dangerous areas (0.9 or higher) were mainly distributed in the mountainous areas around JiAnShi, LinJiangShi, and HeLongShi near the china-north Korea border and in the mountainous area between the WangQingXian and AnTuXian. From the contrast two susceptibility map, we also Knew that The accuracy of landslide susceptibility map drew by ANN method was better than AHP method.

A Study on the Design Method to Optimize an Impeller of Centrifugal Compressor (원심압축기 최적 임펠러 형상설계에 관한 연구)

  • Cho, Soo-Yong;Lee, Young-Duk;Ahn, Kook-Young;Kim, Young-Cheol
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.1
    • /
    • pp.11-16
    • /
    • 2013
  • A numerical study was conducted to improve the performance of an impeller of centrifugal compressor. Nine design variables were chosen with constraints. Only meridional contours and blade profile were adjusted. ANN (Artificial Neural Net) was adopted as a main optimization algorithm with PSO (Particle Swarm Optimization) in order to reduce the optimization time. At first, ANN was learned and trained with the design variable sets which were obtained using DOE (Design of Experiment). This ANN was continuously improved its accuracy for each generation of which population was one hundred. New design variable set in each generation was selected using a non-gradient based method of PSO in order to obtain the global optimized result. After $7^{th}$ generation, the prediction difference of efficiency and pressure ratio between ANN and CFD was less than 0.6%. From more than 1,200 design variable sets, a pareto of efficiency versus pressure ratio was obtained and an optimized result was selected based on the multi-objective function. On this optimized impeller, the efficiency and pressure ratio were improved by 1% and 9.3%, respectively.

THE ANNIHILATOR IDEAL GRAPH OF A COMMUTATIVE RING

  • Alibemani, Abolfazl;Bakhtyiari, Moharram;Nikandish, Reza;Nikmehr, Mohammad Javad
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.417-429
    • /
    • 2015
  • Let R be a commutative ring with unity. The annihilator ideal graph of R, denoted by ${\Gamma}_{Ann}(R)$, is a graph whose vertices are all non-trivial ideals of R and two distinct vertices I and J are adjacent if and only if $I{\cap}Ann(J){\neq}\{0\}$ or $J{\cap}Ann(I){\neq}\{0\}$. In this paper, we study some connections between the graph-theoretic properties of this graph and some algebraic properties of rings. We characterize all rings whose annihilator ideal graphs are totally disconnected. Also, we study diameter, girth, clique number and chromatic number of this graph. Moreover, we study some relations between annihilator ideal graph and zero-divisor graph associated with R. Among other results, it is proved that for a Noetherian ring R if ${\Gamma}_{Ann}(R)$ is triangle free, then R is Gorenstein.

A study on the forecast of container traffic using hybrid ARIMA-neural network model (하이브리드 ARIMA-신경망 모델을 통한 항만물동량 예측에 관한 연구)

  • Shin, Chang-Hoon;Kang, Jeong-Sick;Park, Soo-Nam;Lee, Ji-Hoon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.259-260
    • /
    • 2007
  • The forecast of a container traffic has been very important for port plan and development Generally, statistic methods, such as regression analysis, ARIMA, have been much used for traffic forecasting. Recent research activities in forecasting with artificial neural networks(ANNs) suggest tint ANNs am be a promising alternative to the traditional linear methods. In this paper, a hybrid methodology that combines both ARIMA and ANN models is proposed to take advantage of the unique strength of ARIMA and ANN models in linear and nonlinear modeling. The results with port traffic data indicate tint effectiveness can differ according to the ch1racteristics of ports.

  • PDF