• 제목/요약/키워드: Anmyeon

검색결과 69건 처리시간 0.025초

Clarification of Methane Emission Sources Using WDCGG Data: Case Study of Anmyeon-do Observatory, Korea

  • Park, Soo-Young;Park, JongGeol;Kim, Chung-Sil;Shin, ImChul
    • Asian Journal of Atmospheric Environment
    • /
    • 제7권2호
    • /
    • pp.85-94
    • /
    • 2013
  • Methane concentrations have been monitored at the Anmyeon-do Observatory, Korea, since 1999. In recent years, the methane concentration has increased, but the sources of this increase have yet to be identified. This study was designed to identify the major source contributing to the increase by using World Data Centre for Greenhouse Gases (WDCGG) data and the Greenhouse Gases Emission Presumption (GEP) method. The data were collected at Anmyeon-do between 2003 and 2009 (except 2008), and the analyses showed that the increase in methane concentration originated mainly in rice paddies around the observation point. The annual average methane concentration at Anmyeon-do was 1894 ppb, of which 100-103 ppb (5.3-5.4%) was shown to originate mainly from rice paddies. The seasonal fluctuation in methane concentration from May to October estimated by the GEP method was compared with experimental data of previous research conducted on rice paddies. The close match obtained through this comparison shows that the GEP method is effective. The difference in methane concentration was also analyzed in terms of land use and land cover. It was shown that although rice paddies account for only 14.7% of the area surveyed, they accounted for between 69 and 90% of the total increase in methane concentration. These results confirm that rice paddies are the main source of the increase in methane concentration observed at Anmyeon-do.

한반도 배경지역 (안면, 울진, 고산) 상수의 산성도와 화학특성 (Acidity and Chemical Composition of Precipitation at Background Area of the Korean Peninsula (Anmyeon, Uljin, Gosan))

  • 김상백;최병철;오숙영;김산;강공언
    • 한국대기환경학회지
    • /
    • 제22권1호
    • /
    • pp.15-24
    • /
    • 2006
  • Precipitation samples were collected at Anmyeon (1997 - 2004), Uljin, and Gosan (1998 ~ 2004), the background area of the Korean Peninsula. These samples were analyzed for the concentration of 9 major ionic components ($F^{-}$,$Cl^{-}$, $NO_{3}^{-}$, $SO_{4}^{2-}$, $Na^{+}$, $NH_{4}^{+}$, $K^{+}$, $Mg^{2+}$, $Ca^{2+}$) with including a pH and an electric conductivity. Data quality for these samples was verified by ion balance and conductivity balance which are based on GAW manual for precipitation chemistry and the number of valid data at Anmyeon, Uljin, and Gosan is 249, 173, and 188, respectively. During the study period, the precipitation-weighted average pH at Anmyeon, Uljin, and Gosan was found to be 4.81, 4.87 and 4.89, respectively and each annual average pH was showed below pH 5.6 for every site. From the frequency survey on the precipitation acidity, the occurrence rate of acid rain below pH 5.6 is greater than $80\%$ for every site. Particularly, the highest occurrence rate for strong acid rain below pH 4.5 was found at Anmyeon, $32.1\%$, compared with other sites ($10.4\%$ at Uljin, $15.4\%$ at Gosan). That's because acidifying species (nss-$SO_{4}^{2-}$, $NO_{3}^{-}$) are remarkably high concentration at Anmyeon.

안면도 대기 중 PM2.5 내 n-alkanes의 월별 농도 분포 특성 (Monthly Variation of n-alkanes concentration in PM2.5 of the Anmyeon Island)

  • 김기애;이종식;김은실;정창훈;김용표;이지이
    • 한국대기환경학회지
    • /
    • 제34권1호
    • /
    • pp.166-176
    • /
    • 2018
  • The n-alkanes which are stable compounds in the atmosphere are emitted by anthropogenic sources and biological sources. The goal of this study is to understand characteristics of n-alkane distributions in $PM_{2.5}$ of the Anmyeon Island which is one of background site in Korea. The concentration of n-alkanes in $PM_{2.5}$ was measured at Anmyeon Island for one year from June 2015 to May 2016. The average concentration of total n-alkanes (${\sum}$ n-alkanes) from C20 to C34 was $14.02{\pm}10.26ng\;m^{-3}$ and ranged from 1.77 to $47.65ng\;m^{-3}$. Various diagnostic parameters were used to identify the source. As a result, it is considered that Anmyeon Island had a large influence of biological sources during non-heating period, while the influence of anthropogenic emission during the heating period was significant. Principle Component Analysis (PCA) was performed and yielded three components that accounted for 93.6% of the total variance in n-alkanes. Factor 1, which accounted for 42.3% of the total variance, indicated anthropogenic source including fossil fuel and biomass combustion, while, Factor 3 was interpreted as the biological sources such as plant wax.

Atmospheric Aerosol Optical Properties in the Korean Peninsula

  • Oh, Sung-Nam;Sohn, Byung-Ju;Chung, Hyo-Sang;Park, Ki-Jun;Park, Sang-Soon;Hyun, Myung-Suk
    • 한국대기환경학회:학술대회논문집
    • /
    • 한국대기환경학회 2003년도 춘계학술대회 논문집
    • /
    • pp.423-423
    • /
    • 2003
  • The radiative properties of atmospheric aerosol are determined by the mass and chemical characteristics, and optical properties such as aerosol optical depth (AOD), ngstr m parameter ( $\alpha$) and single scattering albedo (SSA). In particular these aerosol optical properties also determine surface temperature perturbation that may give some information in understanding the regional atmospheric radiative forcing. For understanding the radiative forcing and regional surce of aerosol, this paper summarizes and compares the aerosol optical properties results from and compares the atmospheric aerosol optical properties results from two different experiments: Anmyeon 2000 and Jeju 2001. Korea Global Atmosphere Watch Observatory (KGAWO) at Anmyeon island and ACE-Asia super-site at Gosan Jeju island have measured the radiations and aerosols since the year of 2000. The sites are located in the mid-west and south of Korea peninsula where it is strongly affected by the Asian dust coming from China region in every spring. Aerosol optical properties over both sites were measured through the ground-based sun and sky radiometers were analyzed for understanding the radiation and climate properties. Number concentration and chemical components of aerosol were additionally analyzed for the source estimation in the transportation. The frequency distributions of aerosol optical depth are rather narrow with a modal vaiue of 0.38 at both sites. However, the distributions of show one peak (1.13) at Jeju but two peaks (0.63 and 1.13) at Anmyeon. In the cases of Anmyeon, one peak around 0.63 corresponds to relatively dust-free cases, and the second peak around 1.13 characterizes the situation when Asian dust is presented. The correlation between AOD and resulted high correlation on the wide range with high values of optical depth at Anmyeon, otherwise a narrow range of with moderate to low AOD at Jeju. In dust free condition SSA decrease with waveleneth while in the presence of Asian dust SSA either stays neutral or increases slightly with wavelength. The change of surface temperature shows the stronger positive correlations with aerosol optical depth increase at Anmyeon than Jeju. In the chemical properties the aerosol are related to high concentrations in inorganic matters, SO$^4$, NO$_3$, CA2+ in fine and coarse.

  • PDF

광학입자계수기를 이용한 안면도 연직 에어러솔 수농도 크기 분포 특성 (Features on the Vertical Size Distribution of Aerosols using Ballon-borne Optical Particle Counter at Anmyeon)

  • 최병철;;임재철;정상부;김윤석;;;;김상백;홍기만;이영곤;유희정
    • 대기
    • /
    • 제15권3호
    • /
    • pp.149-153
    • /
    • 2005
  • A balloon-borne Optical Particle Counter (hereafter "OPC Sonde"), which was developed by the atmospheric research group of Nagoya University, is used for getting the information of vertical profile of particle size and concentration in Anmyeon ($36^{\circ}32^{\prime}N$ $126^{\circ}19^{\prime}E$) on 18 March 2005. A range of five different particle sizes is shown in the vertical profile of aerosol number density estimated from the OPC Sonde. It was found that small size particles have vertically larger aerosol number density than relatively big ones. For all size ranges the vertical aerosol number density shows a decreased pattern as the altitude becomes higher. The aerosol number density of $0.3{\sim}0.5{\mu}m$, $0.5{\sim}0.8{\mu}m$, $0.8{\sim}1.2{\mu}m$ size ranges at the 10km height, which is the tropopause approximately, are $1,000,000ea/m^3$, $100,000ea/m^3$, $10,000ea/m^3$ respectively. The data of OPC Sonde are also compared with the data of PM10 $\beta$-ray) and Micro Pulse Lidar which are operating at Korea Global Atmosphere Watch Observatory in Anmyeon.

한반도 지역에서의 이산화탄소 변화 경향과 AIRS, GOSAT 위성 자료의 정확도 비교 (Comparison of Atmospheric Carbon Dioxide Concentration Trend and Accuracy from GOSAT and AIRS data over the Korean Peninsula)

  • 이상희;김준;조희구;구태영;오미림;이종호
    • 대한원격탐사학회지
    • /
    • 제31권6호
    • /
    • pp.549-560
    • /
    • 2015
  • 지구 온난화와 기후 시스템에 가장 강력한 영향을 미치는 인자 중 하나인 대기 중 이산화탄소 농도 변화를 지속적으로 모니터링하는 것은 중요하며, 현재 지상 관측과 더불어 위성을 통한 모니터링이 이루어지고 있다. 본 연구에서는 동북아시아 지역 중에서도 1999년부터 주요 대기질 관측소로 운영되어 온 안면도와 고산에서의 대기 중 이산화탄소 농도 변화에 대한 경향성을 전구 월별 평균 값과 비교해 보았으며, 이를 대표적인 온실 기체 관측 위성인 Greenhouse Gases Observing Satellite (GOSAT)과 Atmospheric Infrared Sounder (AIRS)에서 산출되는 값을 안면도와 고산 관측소의 농도 값과 비교하였다. 1999년 1월 대기 중 평균 농도가 371.87 ppm이었던 안면도에서의 이산화탄소 농도는 2013년 12월 405.50 ppm으로 지난 15년간 지속적으로 증가하였다(KMA, 2013). 플라스크 공기 샘플링 방법에 의해 관측된 안면도의 이산화탄소 농도는 같은 기간 전구의 계절 변동성 및 증가 추이가 동일했으나, 동북아시아에서의 이산화탄소 농도의 증가폭이 전구보다 평균 4 ppm 더 높게 나타났다. GOSAT과 AIRS에서 산출된 이산화탄소는 안면도 관측소의 지상 농도와 비교되었으며, 이를 통해 두 위성 자료들의 정확도가 비교하고자 하였다. GOSAT과 AIRS 모두 월별 이산화탄소 농도는 지상 관측소인 안면도의 관측 값보다는 낮은 분포 경향을 보였으나, 계절 변동성과 증가 추이는 동일하게 나타났다. GOSAT과 AIRS에서 산출되는 이산화탄소 농도는 위성별 정확도 분석을 위해 두 위성의 관측 기간 중 동일 관측이 수행된 2011년 1월부터 2012년 12월까지의 자료를 비교하였다. GOSAT은 r이 0.947, RMSD가 5.610, bias가 -5.280으로 r이 0.737, RMSD가 8.574, bias가 -7.316으로 나타난 AIRS보다 동북아시아를 대표하는 안면도 관측소에서의 정확도가 더 높게 나타났다.

Characteristics of the Erythemal Ultraviolet-B (EUV-B) Irradiance in Anmyeon (Korea Global Atmosphere Watch Center)

  • Hong, Gi-Man;Park, Jeong-Gyoo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제24권E2호
    • /
    • pp.74-82
    • /
    • 2008
  • We have examined seasonal and annual means of clear-sky solar noon and daily erythemal ultraviolet-B irradiances measured in Anmyeon. The intensity of the EUV-B irradiance is mainly dependent on solar zenith angle (SZA) and total ozone amounts on clear day conditions. The daily maximum occurs near solar noon time and the highest monthly accumulated EUV-B is seen in July in Anmyeon. The maximum daily variation occurs in June and July due to precipitation and clouds. The 7-year trend of EUV-B irradiance shows that it is slightly increasing. Additionally, we could confirm that aerosol effects such as Asian Dust decreases the EUV-B irradiance reaching the ground surface by 35% to 60%. For more than 45% of the summer days, EUV-B irradiacne was high enough that the UV index registered higher than category Extremely High. This information will be very important for evaluation of the UV index for prevention of both skin cancer and ecosystem damages as well as to understand UV climatology over the Korean Peninsula.

기상청에서 운용 중인 지역별 지표 홍반자외선(EUV-B) 복사의 특성 (Characteristics of Erythemal Ultraviolet Irradiance operating at Korea Meteorological Administration)

  • 홍기만;최병철
    • 한국대기환경학회지
    • /
    • 제22권2호
    • /
    • pp.223-233
    • /
    • 2006
  • We analyzed the monthly and seasonal mean of the daily Erythemal Ultraviolet-B (EUV-B, $280{\sim}320nm$) irradiance operating in Pohang, Anmyeon, Gosan, Mokpo and Kangnung with UV-Biometer (Solar Light Co., Model No. 501) at clear-sky noon during the period from 1999 to 2004. Also, we investigated the seasonal and regional characteristics for the UV index over the Korean Peninsula. The daily maximum occurred near solar southing time and the highest monthly accumulated EUV-B irradiance appeared in July and August at each regional observatory. The monthly mean value of the clear-sky EUV-B irradiance in Pohang, Anmyeon, Gosan, Mokpo and Kangnung showed 196.6, 161.8, 221.9, $171.5mWm^{-2}\;and\;179.7mWm^{-2}$ near noon in July respectively. The annual mean value of the daily accumulated EUV-B irradiance in Pohang, Anmyeon, Gosan, Mokpo and Kangnung were 1.8, 2.1, 2.2, $1.8kJm^{-2}\;and\;1.5kJm^{-2}$ respectively. The UV Index (UVI) showed above UVI 7(High) more than 90 days during one year over the Korean Peninsula.

생장지역별 소나무재의 물리적·역학적 특성과 상호 상관관계 (Physical and Mechanical Properties of Korean Red Pine Wood from Different Growth Sites and Correlations between Them)

  • 한연중;이현미;엄창득
    • Journal of the Korean Wood Science and Technology
    • /
    • 제44권5호
    • /
    • pp.695-704
    • /
    • 2016
  • 충청북도 태안군 안면도와 경상북도 울진군 소광리 지역 소나무재의 물리적 특성과 역학적 특성을 측정하고, 상호상관관계를 분석하였다. 두 지역의 5영급과 9영급 소나무에서 생장코어를 채취하여 방사방향의 연륜폭과 만재율을 측정하였다. 두 지역 모두에서 연륜폭은 수에서 수피까지 감소하는 경향을 나타냈다. 전체 평균 연륜폭은 안면도 지역에서 5영급과 9영급이 각각 2.865 mm, 1.705 mm이고, 소광리 지역에서 5영급과 9영급이 각각 4.764 mm, 2.228 mm로 안면도 지역의 값이 소광리 지역에 비하여 약 23-40% 정도 작았다. 두 지역 모두 연륜폭이 증가함에 따라 만재율은 감소하는 음의 상관관계를 보였다. 강도측정용 시험편에 대하여 소나무재의 물리적 특성과 역학적 특성의 상관관계를 단순회귀분석으로 분석하였다. 만재율과 전건밀도는 서로 양의 상관관계를 보였으며, 통계적으로 유의하였다. 만재율과 역학적 특성은 안면도 소나무재의 휨강도 시험편을 제외하고, 양의 상관관계를 보였으나 통계적으로 유의하지 않았다. 전건밀도와 역학적 특성은 두 지역 모두 양의 상관관계를 보였으나, 소광리 지역 시험편에서만 통계적으로 유의하였다. 안면도 지역의 소나무재의 평균 압축강도와 휨강도는 각각 51.3 MPa와 80.5 MPa로 소광리 지역의 평균 압축강도와 휨강도 37.7 MPa와 63.7 MPa에 비하여 크게 측정되었다. 두 지역 간의 강도 차이는 생장조건의 차이도 있지만, 영급에 의한 연륜폭과 만재율 등의 차이에 의한 결과로 판단된다.

안면도와 고산 기후변화감시소에서 채취한 강수 성분의 조성 및 중화 특성(2008~2017년) (Composition and Neutralization Characteristics of Precipitation at the Anmyeon-do and Gosan GAW Stations from 2008 to 2017)

  • 고희정;정지영;김은실;이상삼;류상범
    • 대기
    • /
    • 제29권4호
    • /
    • pp.403-416
    • /
    • 2019
  • Precipitation samples were collected at the GAW Stations in Anmyeon-do and Gosan for 10 years (2008-2017) to analyze pH, electrical conductivity and NH4+, Na+, K+, Mg2+, Ca2+, SO42-, NO3-, Cl-, and F- ions. From the analysis, the correlation between pH and rainfall, the composition of precipitation and comparison with other regions, and the results of neutralization characteristics by seasonal and pH were determined. In the comparison of ion balance and conductivity for the validation of analytical data, the correlation coefficients were within the range of 0.996~0.999, implying good linear relationship. The volume-weighted pH of the Anmyeon-do and Gosan areas were 4.7 and 4.9, respectively. The pH of the rainfall was affected by washout and rainout in both areas. The ionic strength of precipitation at Anmyeondo and Gosan were 0.42 ± 0.63 mM and 0.37 ± 0.75 mM, indicating about 27.6% and 35.3% of the total precipitation as per a pure precipitation criterion (10-4 M), respectively. The composition ratio of ionic species were 44.7% and 57.5% for marine sources (Na+, Mg2+, Cl-), 40.6% and 22.2% for the secondary inorganic components (NH4+, nss-SO42-, NO3-), and 5.6% and 4.0% for the soil source (nss-Ca2+), respectively. The neutralization factor of Anmyeon-do and Gosan were 0.43~0.65 and 0.34~0.48, and the neutralization factors of calcium carbonate were 0.15~0.34 and 0.25~0.30, respectively. Thus, both regions have the highest rate of neutralization caused by ammonia. As pH increased in Anmyeon-do and Gosan, change in calcium carbonate became greater than that in ammonia.