• 제목/요약/키워드: Ankle moment

검색결과 109건 처리시간 0.02초

Effects of Combined Wedge on Angle and Moment of Ankle and Knee Joint During Gait in Patients With Genu Varus

  • Yang, Hae Sun;Choi, Houng Sik
    • 국제물리치료학회지
    • /
    • 제7권2호
    • /
    • pp.1025-1030
    • /
    • 2016
  • The purpose of this study was to investigate the effects of combined wedge on the range of motion in ankle and knee joint, ankle eversion moment and knee adduction moment, and center of pressure excursion of foot for genu varus among adult men during gait. This study was carried out with 10 adult men for genu varus in a motion analysis laboratory in J university. The subjects of the experiment were measured above 5cm width between the knees on contact of both medial malleolus of ankle while standing. The width of their knees in neutral position was measured without the inversion or eversion of the subtalar joint by the investigator. The subjects of the experiment were ten who were conducted randomly for standard insole, insole with $10^{\circ}$ lateral on rear foot wedge, insole at $10^{\circ}$lateral on rear foot and $5^{\circ}$ medial on fore foot wedge. Before and after intervention, changes on the range of motion in ankle and knee joint, ankle eversion moment and knee adduction moment, and center of pressure excursion were measured. In order to compare analyses among groups; repeated one-way ANOVA and $Scheff{\acute{e}}$ post hoc test were used. As a result, combined wedge group was significantly decreased compared to control wedge group in terms of knee varus angle in mid-stance(p<.05). Combined wedge group was significantly decreased compared to lateral wedge group in terms of ankle eversion moment in whole stance(p<.05). Combined wedge group was significantly decreased compared to lateral wedge group in terms of knee adduction moment in whole stance(p<.05). Combined wedge group was significantly decreased compared to lateral wedge in terms of center of pressure excursion in whole stance(p<.05). The results of this study suggest that combined wedge for genu varus decreased ankle eversion moment and knee adduction moment upon center of pressure excursion. We hypothesize that combined wedge may also be effective in the protection excessive ankle pronation.

발목재활로봇을 위한 6축 힘/모멘트센서 설계 (Design of Six-Axis Force/Moment Sensor for Ankle-Rehabilitation Robot)

  • 김용국;김갑순
    • 제어로봇시스템학회논문지
    • /
    • 제19권4호
    • /
    • pp.357-363
    • /
    • 2013
  • Most serious patients who have the paralysis of their ankles can't use of their feet freely. But their ankles can be recovered by an ankle bending rehabilitation exercise and a ankle rotating rehabilitation exercise. Recently, the professional rehabilitation therapeutists are much less than stroke patients in number. Therefore, the ankle-rehabilitation robot should be developed. The developed robot can be dangerous because it can't measure the applied bending force and twisting moment of the patients' ankles. In this paper, the six-axis force/moment sensor for the ankle-rehabilitation robot was specially designed the weight of foot and the applied force to foot in rehabilitation exercise. As a test results, the interference error of the six-axis force/moment sensor was less than 2.51%. It is thought that the sensor can be used to measure the bending force and twisting moment of the patients' ankles in rehabilitation exercise.

Development of a Six-Axis Force/Moment Sensor with Rectangular Taper Beams for an Intelligent Robot

  • Kim, Gab-Soon
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권4호
    • /
    • pp.419-428
    • /
    • 2007
  • This paper describes the development of a six-axis force/moment sensor with rectangular taper beams for an intelligent robot's wrist and ankle. In order to accurately push and pull an object with an intelligent robot's hand, and in order to safely walk with an intelligent robot's foot, the robot's wrist and ankle should measure three forces Fx, Fy, and Fz, and three moments Mx, My, and Mz simultaneously from the mounted six-axis force/moment sensor to the intelligent robot's wrist and ankle. Unfortunately, the developed six-axis force/moment sensor utilized in other industrial fields is not proper for an intelligent robot's wrist and ankle in the size and the rated output of the six-axis force/moment sensor. In this paper, the structure of a six-axis force/moment sensor with rectangular taper beams was newly modeled for an intelligent robot's wrist and ankle, and the sensing elements were designed by using the derived equations, following which the six-axis force/moment sensor was fabricated by attaching strain-gages on the sensing elements. Moreover, the characteristic test of the developed sensor was carried out by using the six-component force/moment sensor testing machine. The rated outputs from the derived equations agree well with those from the experiments. The interference error of the sensor is less than 2.87%.

Effects of Joint Mobilization on Foot Pressure, Ankle Moment, and Vertical Ground Reaction Force in Subjects with Ankle Instability

  • Yoon, Na Mi;Seo, Yeon Soon;Kang, Yang-Hoon
    • 한국운동역학회지
    • /
    • 제26권2호
    • /
    • pp.153-159
    • /
    • 2016
  • Objective: The purpose of this study was to investigate the effects of joint mobilization on foot pressure, ankle moment, and vertical ground reaction force in subjects with ankle instability. Method: Twenty male subjects (age, $25.38{\pm}3.62yr$; height, $170.92{\pm}5.41cm$; weight, $60.74{\pm}9.63kg$; body mass index (BMI), $19.20{\pm}1.67kg/m^2$) participated and underwent ankle joint mobilization. Weight-bearing distribution, ankle dorsi/plantar flexion moment, and vertical ground reaction force were measured using a GPS 400 and a VICON Motion System (Oxford, UK), and subsequently analyzed. SPSS 20.0 for Windows was used for data processing and paired t-tests were used to compare pre- and post-mobilization measurements. The significance level was set at ${\alpha}$ = .05. Results: The results indicated changes in weight-bearing, ankle dorsi/plantar flexion moment, and vertical ground reaction force. The findings showed changes in weight-bearing distribution on the left (pre $29.51{\pm}6.31kg$, post $29.57{\pm}5.02kg$) and right foot (pre $32.40{\pm}6.30kg$, post $31.18{\pm}5.47kg$). There were significant differences in dorsi/plantar flexion moment (p < .01), and there were significant increases in vertical ground reaction forces at initial stance (Fz1) and terminal stance (Fz2, p < .05). Additionally, there was a significant reduction in vertical ground reaction force at midstance (Fz2, p < .001). Conclusion: Joint mobilization appears to alter weight-bearing distribution in subjects with ankle instability, with resultant improvements in stability.

The Influence of Unstable Shoes on Kinematics and Kinetics of the Lower limb Joints during Sit-to-stand task

  • Kim, Yun-Jin;Park, Ji-Won
    • The Journal of Korean Physical Therapy
    • /
    • 제28권1호
    • /
    • pp.14-21
    • /
    • 2016
  • Purpose: The purpose of this study was to investigate examine how the kinematics and kinetics of lower limb joints were changed depending on the unstable shoes (US) during sit-to-stand task (SitTS). Methods: Nineteen healthy females were participated in this study. The subjects performed sit-to-stand task with US and barefoot. The experiment was repeated three times for each tasks with conditions. The kinematics and kinetics of lower limb joint were measured and analyzed using a 3-D motion analysis system. A paired t-test was utilised performed for to identificationy of changes in mean of angle, force, and moment between both the two conditions. Results: The results of this study showed kinematic differences in lower limb joints during SitTS based on the US. The hip, knee, and ankle angle showed statistically significant differences during SitTS. At the initial of SitTS, Tthe force and moment of the hip flexor, hip extensor, knee flexor, knee extensor, ankle flexor, and ankle extensor showed statistically significant differences. At the terminal of SitTS, Tthe force and moment of the hip flexor, hip extensor, knee flexor, knee extensor, ankle flexor, and ankle extensor showed statistically significant differences. At the maximum of SitTS, Tthe moment of the hip extensor showed statistically significant differences. The force and moment of the ankle flexor, extensor moment showed statistically significant differences. Conclusion: Therefore, Wwearing US is considered to influence on the lower limb joints kinematics and kinetics during SitTS movements, and thus suggests the possibility that of reducing the risks of pain, and osteoarthritis caused by changes in the loading of lower limb joints.

비만인들의 보행속도와 하지관절모멘트에 대한 상관관계 분석 (Correlation Between Walking Speeds and Lower Extremities Joint Moment in Obese)

  • 신성휴;김태완;권문석
    • 한국운동역학회지
    • /
    • 제16권3호
    • /
    • pp.105-115
    • /
    • 2006
  • The purpose of this study is to elucidate the mechanical characteristics of lower extremity joint movements at different walking speeds in obese people and suggest the very suitable exercise for obese person's own body weight and basic data for clinical application leading to medical treatment of obesity. This experimental subjects are all males between the ages of 20 and 30, who are classified into two groups according to Body Mass Index(BMI): one group is 15 people with normal body weight and the other 15 obese people. Walking speed is analysed at 3 different speeds ($1.5^m/s$, $1.8^m/s$, $2.1^m/s$) which is increased by $0.3^m/s$ from the standard speed of $1.5^m/s$. We calculated joint moments of lower extremity during stance phase through video recording and platform force measurement.Two-way ANOVA(Analysis of Variance, Mix) is applied to get the difference of moments according to walking speeds between normal and obese groups. Pearson's Correlation Analysis is applied to look into correlation between walking speeds and joint moments in both groups. Significance level of each experiment is set as ${\alpha}=.05$. As walking speed increases maximum ankle plantar flexion moment in the stance phase is smaller in obese group than in normal group, which is suggestive of weak toe push-off during terminal stance in obese group, and the highest maximum ankle plantar flexion moment in obese group during the middle speed walking($1.8^m/s.$). Maximum ankle dorsal flexion moment in obese group is relatively higher than in normal group and this is regarded as a kind of compensatory mechanism to decrease the impact on ankle when heel contacts the floor. Maximum knee flexion and extension moments are both higher in normal group with an increase tendency proportional to walking speed and maximum hip flexion and extension moments higher in obese group. In summary, maximum ankle plantar flexion moment between groups(p<.025), maximum knee moment not in flexion but in extension(p<.001) within each group according to increasing walking speed, and maximum hip flexion and extension moment(p<.001 and p<.004, respectively according to increasing walking speed are statistically significant but knee and hip moments between groups are not. Pearson correlation are different: high correlation coefficients in maximum knee flexion and extension moments, in maximum hip extension moment but not hip flexion, and in maximum ankle dorsal flexion moment but not ankle plantar flexion, in each group. We suspect that equilibrium imbalance develops when the subject increases walking speed and the time is around which he takes his foot off the floor.

착지 후 점프 시 높이가 하지 관절의 변화와 부상기전에 미치는 영향 (The Effects of Landing Height on the Lower Extremity Injury Mechanism during a Counter Movement Jump)

  • 조준행
    • 한국운동역학회지
    • /
    • 제22권1호
    • /
    • pp.25-34
    • /
    • 2012
  • The purpose of this study was to determine the effects of landing height on the lower extremity during a counter movement jump. Fourteen healthy male subjects (age: $27.00{\pm}2.94$ yr, height: $179.07{\pm}5.03$ cm, weight: $78.79{\pm}6.70$ kg) participated in this study. Each subject randomly performed three single-leg jumps after s single-leg drop landing (counter movement jump) on a force platform from a 20 cm and 30 cm platform. Paired t-test (SPSS 18.0; SPSS Inc., Chicago, IL) was performed to determine the difference in kinematics and kinetics according to the height. All significance levels were set at p<.05. The results were as follows. First, ankle and knee joint angles in the sagittal plane increased in response to increasing landing height. Second, ankle and knee joint angles in the frontal plane increased in response to increasing landing height. Third, there were no significant differences in the moment of each segment in the sagittal plane for the jumping height increment. Fourth, ankle eversion moment and knee valgus moment decreased but hip abduction moment increased for the jumping height increment. Fifth, Ankle and knee joint powers increased. In percentage contribution, the ankle joint increased but the knee and hip joints decreased at a greater height. Lastly, as jumping height increased, the power generation at the ankle joint increased. Our findings indicate that the height increment affect on the landing mechanism the might augment loads at the ankle and knee joints.

인간형 로봇의 지능형 발을 위한 6축 발목 힘/모멘트센서 (Development of 6-axis Ankle Force/Moment Sensor for an Intelligent Foot of a Humanoid Robot)

  • 김갑순
    • 한국정밀공학회지
    • /
    • 제24권1호
    • /
    • pp.27-36
    • /
    • 2007
  • This paper describes the development of 6-axis ankle force/moment sensor for the intelligent feet of a humanoid robot. When the robot walks on uneven terrain, the feet should perceive the applied forces Fx, Fy, Fz and moments Mx, My, Mz from the attached 6-axis force/moment sensor on their ankles. Papers have already been published have some disadvantages in the size of the sensor, the rated output and so on. The rated output of each component sensor (6-axis ankle force/moment sensor) is very important to design the 6-axis force/moment sensor for precision measurement. Therefore, each sensor should be designed to get the similar rated output under each rated load. Also, the size of the sensor is very important for mounting to robot's feet. Therefore, the diameter should be below 100 mm and the height should be below 40mm. In this paper, first, the structure of a 6-axis ankle force/moment sensor was modeled for a humanoid robot's feet newly, Second, the equations to predict the strains on the sensing elements was derived, third, the size of the sensing elements was designed by using the equations, then, the sensor was fabricated by attaching straingages on the sensing elements, finally, the characteristic test of the developed sensor was carried out. The rated outputs from the derived equations agree well with the results from the experiments. The interference error of the sensor is less than 2.94%.

정상 성인의 무게 부하 보행이 관절 모멘트의 변화에 미치는 영향 (The Changes of Joint Moments According to Weight Loading Gait on Normal Adults)

  • 정형국
    • 대한물리치료과학회지
    • /
    • 제10권2호
    • /
    • pp.53-61
    • /
    • 2003
  • The purposes of this study were to describe and compare pint moments according to 6 types of gait methods during free speed. 15 volunteers(7 male, 8 female: mean age = 23.33 yrs.) participated and performed 6 types of gait methods. From the 3 types of pint moments of lower extremities(hip, knee, ankle and foot), the following results were made: 1. In left hip pint, the flexion-extension moment was not significantly different, but the adduction-abduction moment and rotation moment were showed different curves during stance phase. 2. In left knee pint, the flexion-extension moment was not significantly different, but the varus-valgus moment and rotation moment were showed different curves during stance phase. 3. In left ankle and foot the dorsiflexion-plantarflexion moment was not significantly different but the varus-valgus moment and rotation moment were showed different curves during stance phase. In conclusion, because weight loading gait with 10-20% of body weight were normal gait patterns, It was inferred that all weight loading gaits did not indicate noxious reactions of human body.

  • PDF

외발 착지 시 신체적 특성 요인들이 발목 관절 상해에 미치는 영향 (Effects of Physical Characteristics Factors on Ankle Joint Injury during One Leg Drop Landing)

  • 이성열;이효근;권문석
    • 한국응용과학기술학회지
    • /
    • 제37권4호
    • /
    • pp.839-847
    • /
    • 2020
  • 본 연구는 외발 착지 시 신체적 특성 요인들인 발목 유연성, 성별, Q-angle이 발목 관절 상해 요인들에 미치는 영향을 분석하는데 목적이 있었다. 이를 위해 오른발을 주발로 사용하고 체육을 전공하는 20대 남성 16명(나이: 20.19±1.78 years, 체중: 69.54±10.12 kg, 신장: 173.22±4.43 cm), 여성 16명(나이: 21.05±1.53 years, 체중: 61.75±6.97 kg, 신장: 159.34±4.56 cm)을 연구대상자로 선정하였다. 외발 착지 시 신체적 특성 요인들이 발목 관절 상해에 미치는 영향을 확인하기 위하여 첫째, 발목 상해 경험에 따른 하지 관절 움직임과 관절 모멘트의 독립 t-test를 실시하였다(α = .05). 둘째, t-test를 통하여 유의한 차이를 나타낸 변인을 종속변인으로 설정하고 발목 유연성, 성별의 차이, Q-angle을 독립변인으로 지정하여 선형다중회귀분석(Multiple Linear Regression)을 사용하였다(α = .05). 본 연구결과 발목 관절 상해를 경험한 그룹은 상해를 경험하지 않은 그룹과는 다르게 발목 관절의 내전, 무릎 관절의 내측 회전을 통한 착지 전략과 기술을 사용하는 것으로 나타났다. 또한 이러한 움직임은 발목 관절의 신전 모멘트를 증가시키고, 엉덩 관절의 신전 모멘트는 감소시키는 것으로 확인되었다. 특히 발목의 배측굴곡 유연성은 발목과 무릎의 착지전략에 영향을 미치며, 성별의 차이는 발목의 신전 모멘트에 영향을 미치는 것을 알 수 있었다. 따라서 외발 착지 시 신체적 특성 요인들이 발목 관절 상해에 영향을 미치는 요인들임을 확인 할 수 있었다.