• Title/Summary/Keyword: Ankle Strength

Search Result 211, Processing Time 0.025 seconds

Study on the Strategy of Muscular Activity for Motor Track of Upper Limbs during Rowing Exercise (로잉운동 시 상지 운동궤적에 따른 근육활성 전략에 관한 연구)

  • Kang, S.R.;Kim, U.R.;Moon, D.A.;Kwon, T.K.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.7 no.2
    • /
    • pp.91-99
    • /
    • 2013
  • The purpose of this study was to investigate the muscular activity and muscle strength for swing track of upper limbs during rowing exercise. Subject was all twenty healthy adults and they were divided into linear exercise group and elliptical exercise group in random. Subjects performed rowing exercise 3-times for a week and performed all 8-weeks. We measured realtime-surface EMG. Also we measured joint torque of elbow, ankle and lumbar in subjects using BIODEX. The result showed that when rowing exercise, elliptical track exercise had higher muscular activity in trapezius, deltoid, erector spinae, rectus femoris, biceps femoris, gastronemius than linear track exercise on more many muscle of upper and lower limbs. Also elbow joint torque and lumbar joint torque was more higher too. but linear exercise also had higher muscular activity in multifidus, tibilalis anterior than elliptical track exercise. According to this experiment, we found out that elliptical track was more efficient than linear track.

  • PDF

Exoskeleton Based on Counterbalance Mechanism for Arm Strength Assistance (중력보상장치 기반의 근력보조 외골격 장치)

  • Lee, Won Bum;Song, Jae-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.6
    • /
    • pp.469-475
    • /
    • 2017
  • Workers in industrial fields are highly exposed to accidents or injuries caused by long working hours. An exoskeleton that is able to support the arm muscles of the worker and thereby reduce the probability of an accident and enhance working efficiency could be a solution to this problem. However, existing exoskeletons demand the use of high-priced sensors and motors, which makes them difficult to use in industrial fields. To solve this problem, we developed an arm assisting exoskeleton that consists only of mechanical components without any electronic sensors or motors. The exoskeleton follows the movement of the human arm by shoulder joint and ankle joint. In addition, counterbalance mechanisms are installed on the exoskeleton to support arm strength. The experimental validation of the exoskeleton was conducted using an EMG sensor, confirming the performance of the exoskeleton.

Development of a Biped Walking Robot Actuated by a Closed-Chain Mechanism

  • Choi, Hyeung-Sik;Oh, Jung-Min;Baek, Chang-Yul;Chung, Kyung-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.209-214
    • /
    • 2003
  • We developed a new type of human-sized BWR (biped walking robot), named KUBIR1 which is driven by the closed-chain type of actuator. A new type of the closed-chain actuator for the robot is developed, which is composed of the four-bar-link mechanism driven by the ball screw which has high strength and high gear ratio. Each leg of the robot is composed of 6 D.O.F joints. For front walking, three pitch joints and one roll joint at the ankle. In addition to this, one yaw joint for direction change, and another roll joint for balancing the body are attached. Also, the robot has two D.O.F joints of each hand and three D.O.F. for eye motion. There are three actuating motors for stereo cameras for eyes. In all, a 18 degree-of-freedom robot was developed. KUBIR1 was designed to walk autonomously by adapting small 90W DC motors as the robot actuators and batteries and controllers are on-boarded. The whole weight for Kubir1 is over 90Kg, and height is 167Cm. In the paper, the performance test of KUBIR1 will be shown.

  • PDF

The Development and Effect of a Tailored Exercise Program on Physical Fitness in Patients with Parkinson's Disease (파킨슨병 맞춤운동프로그램의 개발 및 신체기능에 대한 효과)

  • Sohng, Kyeong-Yae;Moon, Jung-Soon;Lee, Kwang-Soo;Choi, Dong-Won
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.13 no.3
    • /
    • pp.390-400
    • /
    • 2006
  • Purpose: To develop & to examine the effect of a Tailored Exercise Program (TEP) on physical fitness in patients with Parkinson's disease (PD). Method: In a two-group pre-and post-test design, from a total 41 participants. 21 were assigned th the experimental group find the remainder to the control group. The experimental group participated in a 4-day a week, 8 week program in which one session a week was by direct instruction with the self-help group and two sessions a week were by videotaped instruction at home by themselves. The control group did not receive any intervention. Results: The eight week TEP in patients with PD was found to be significantly effective in enhancing muscle strength, ankle flexibility, and balance. However instrumental activities of daily living was not changed by the intervention. Conclusion: These results suggest that TEP can have an effect on physical fitness in patients with PD. Further research with a larger sample and for a longer follow up period is needed to expand our understanding of the effects of TEP for patients with PD.

  • PDF

Development of a Modular-type Knee-assistive Wearable System (무릎근력 지원용 모듈식 웨어러블 시스템 개발)

  • Yu, Seung-Nam;Han, Jung-Soo;Han, Chang-Soo
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.357-364
    • /
    • 2010
  • This study proposes a lower-limb exoskeleton system that is controlled by a wearer's muscle activity. This system is designed by following procedure. First, analyze the muscle activation patterns of human leg while walking. Second, select the adequate actuator to support the human walking based on calculation of required force of knee joint for step walking. Third, unit type knee and ankle orthotics are integrated with selected actuator. Finally, using this knee-assistive system (KAS) and developed muscle stiffness sensors (MSS), the muscle activity pattern of the subject is analyzed while he is walking on the stair. This study proposes an operating algorithm of KAS based on command signal of MSS which is generated by motion intent of human. A healthy and normal subject walked while wearing the developed powered-knee exoskeleton on his/her knees, and measured effectively assisted plantar flexor strength of the subject's knees and those neighboring muscles. Finally, capabilities and feasibility of the KAS are evaluated by testing the adapted motor pattern and the EMG signal variance while walking with exoskeleton. These results shows that developed exoskeleton which controlled by muscle activity could help human's walking acceptably.

A Study on the Rehabilitation Equipment for Knee Joint (무릎관절 재활기구에 관한 연구)

  • Lee, Gui-Hyung;Kim, Yong-Jin;Park, Seok-Hyun;Lee, Hyo-Sung;Cho, Hyun-A
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3_1spc
    • /
    • pp.509-517
    • /
    • 2013
  • This paper presents upgraded equipment to assist a patient in rehabilitating of their knee-joint by themselves. A new automatic mechanism is suggested and developed in order to add functions for enforcing the leg muscles, which were absent in previous rehabilitation machines. Using the Pro-engineer software, we analyze the displacements and speeds of several moving points of the equipment during various planned exercises. In addition, an appropriate control panel for operation is developed. Three motors andthree motor drivers are used in a tilting part for the ankle joint, sliding guide part for the knee joint, and up-down moving part for the whole leg. Finally, various newly upgraded motions can be generated by controlling the three motors simultaneously. we show that by using this equipment, we can adjust the proper length of the equipment according to the user's height and the intensity of the rehabilitation exercise.

The Effect of Dynamic Balance Exercise on Onset Time of the Ankle Muscle Activity in Older Persons (노인에서 동적 균형운동이 발목의 근 수축개시 시간에 미치는 효과)

  • Lee, Jeong-Weon
    • Physical Therapy Korea
    • /
    • v.14 no.2
    • /
    • pp.68-75
    • /
    • 2007
  • Reductions in strength and range of motion in older persons have been associated with decreased functional mobility and risk of falls. The purpose of this research was to investigate the effect of intensive dynamic balance exercise (DBE) during 8 weeks on onset time of medial gastrocnemius and tibialis anterior muscle contraction after perturbation in older women. Thirty subjects were randomly assigned into DBE group or control group. The DBE group participated in 50 minutes 3 days a week for 8 weeks. Surface electromyography (EMG) activity was recorded from the medial gastrocnemius and tibialis anterior muscles of left side. Outcome data were collected both groups at the pre-exercise and post-exercise. Independent t-test and paired t-test were used to determine the statistical difference. Results showed that the passive range of motion and functional reach test were significantly increased in the DBE group than the control group at the post-exercise (p<.05). The onset time of both muscles and discrepancy of onset time significantly reduced in the DBE group than the control group at the post-exercise (p<.05). The onset time of both muscles were significantly reduced in the post-exercise than the pre-exercise in the DBE group (p<.05). The discrepancy of onset time in the DBE group was significantly reduced in the post-exercise than the pre-exercise (p<.05). These findings suggest that intensive dynamic balance exercise for the eight weeks was effective in improving the postural control with older persons.

  • PDF

Effects of an 8-week Pilates Core Training on the Stability and Symmetry of the L-sit on Rings

  • Gil, Hojong;Yoo, Sihyun;Yoon, Sukhoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.4
    • /
    • pp.383-390
    • /
    • 2016
  • Objective: Gymnastics on rings needs a high level of muscle strength with balance ability for controlling the body. A study on a new balance training program is necessary for elite gymnasts. Therefore, the purpose of this study was to investigate the effects of an 8-week pilates core-muscle training on balance ability and asymmetry index of the L-sit on the rings in male elite gymnasts. Method: Ten elite gymnasts (age: $20.6{\pm}0.7years$, height: $169.9{\pm}4.9cm$, weight: $65.4{\pm}5.6kg$, career duration: $20.6{\pm}0.7years$), who are students at K-university, participated in this study. Results: First, the range of the COM tended to decrease in the anterior-posterior direction. Second, the left hip joint angle and knee extension and ankle dorsiflexion angles significantly increased after the pilates training. Third, the ROM also increased. Fourth, the symmetry value increased in the hip angle, while the symmetry index in all joints of the ROM decreased. As a result, the pilates core-muscle training influenced the static balance ability during the L-sit on the rings. Conclusion: Accordingly, the pilates core-muscle training is suitable in enhancing the basic balance ability in gymnastics on rings.

EEG Changes due to Low-Frequency Electrical Stimulation to the BL62 and KI6 of Elderly Women (노년 여성의 신맥.조해 저주파 자극이 뇌파에 미치는 영향)

  • Lee, Sanghun;Choi, Kwang-Ho;Cho, Seong Jin;Choi, Sun-Mi;Hong, Kwon Eui;Ryu, Yeon-Hee
    • Korean Journal of Acupuncture
    • /
    • v.30 no.2
    • /
    • pp.135-142
    • /
    • 2013
  • Objectives : This study aimed to investigate the general effects of low-frequency electrical stimulation of the ankle joint acupuncture points(BL62 and KI6) on the brain waves of elderly women as a pilot study to figure out the possibility of candidate non-invasive and non-chemical stimulation method for the enhancing the brain function. Methods : A randomized, controlled, double-blinded clinical trial was performed in 31 healthy women(mean age, 54.5 years) within a treatment duration of 12 sessions. In the experimental group, low-frequency electrical stimulation was applied using the maximum range of the individual insensible strength(mean current, $0.04{\mu}A$). The control group received sham stimulation. The background electroencephalographic activity was measured before and after the12 sessions. Results : After 12 sessions of stimulation, the relative power of the alpha wave increased(32 of 32 channels: significant difference in 11 channels, p<0.05); the theta(30 of 32 channels: significant difference in 10 channels, p<0.05), beta(31 of 32 channels), and gamma(30 of 32 channels: significant difference in 7 channels, p<0.05) powers were also decreased compared with the sham group. Conclusions : Electrical stimulation on the ankle joint acupuncture points(BL62 and KI6) seemed to stabilize the elderly women brain by inducing the alpha power and reducing beta, theta, and gamma powers. These results provide insight into the action mechanism of the stimulation and can assist the future developement of a non-invasive and non-chemical treatment technique for stressor related cognitive problems.

Effect of Correction to Muscle Imbalance in Lower Limbs according to Reduction of Weight Bearing Methods of Four Point of Horizontal Shaft (횡축 4정점 체중부하 감소기법 이용한 하지 근력불균형 개선에 미치는 효과)

  • Kang, S.R.;Kim, U.R.;Jeong, H.C.;Kwon, T.K.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.7 no.2
    • /
    • pp.101-107
    • /
    • 2013
  • In this paper, we were to investigate effect of correction to muscle imbalance in lower limbs according to reduction of weight bearing methods of four point of horizontal shaft using two-belt treadmill. Participants were divided to two group according to each ten peoples who have difference of muscle function in left and right legs over 20%. Experiment progressed forty minutes a day three days a week, total four weeks and we estimated the maximal peak torque and average power for testing joint torque in hip, knee and ankle. The results showed that the correction effect of muscle imbalance to the maximal muscle strength was the most effective in hip joint. Also in knee joint, correction effect of muscular reaction was the most effective too. We thought that reduction of weight bearing methods could be positive effect to correct muscle imbalance in lower limbs.

  • PDF