• Title/Summary/Keyword: Anisotropy etching

Search Result 33, Processing Time 0.024 seconds

Surface Flatness Improvement in Si Anisotropy Etching Process Utilizing Ultrasonic Wave Technology (초음파 기술을 이용한 실리콘 이방성 식각 공정에서의 표면 평탄화 향상 연구)

  • Yun, Eui-Jung;Kim, Jwa-Yeon;Lee, Kang-Won;Lee, Seok-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.416-417
    • /
    • 2005
  • In this study, we optimized the process of Si anisotropy etching by combing tetramethyl ammonium hydroxide (TMAH) etching process with ultrasonic wave technology. New ultrasonic TMAH etching apparatus was developed and it was used for fabricating a $20{\mu}m$ thick diaphragm for Si piezoresistive pressure sensors. Based on comparison study on etch rate and surface flatness, it was observed that the Si anisotropy etching methode with new ultrasonic TMAH etching apparatus (at 40 kHz/ 500 watt) was superior to conventional etching methods with TMAH or TMAH+ammonium persulfate(AP) solutions.

  • PDF

Reactive ion Etching Characteristics of 3C-SiC Grown on Si(100) Wafers (Si(100) 기판위에 성장된 3C-SiC의 RIE 특성)

  • Jung, Soo-Yong;Woo, Hyung-Soon;Jin, Dong-Woo;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.892-895
    • /
    • 2003
  • This paper describes on RIE(Reactive Ion Etching) characteristics of 3C-SiC(Silicon Carbide) grown on Si(100) wafers. During RIE of 3C-SiC films in this work, $CHF_3$ gas is used to form of polymer as a side wall for excellent anisotropy etching. From this process, etch rates are obtained a $60{\sim}980{\AA}/min$ by various conditions such as $CHF_3$ gas flux, $O_2$ addition ratio, RF power and electrode distance. Also, approximately $40^{\circ}$ mesa structures are successfully formed at 100 mTorr $CHF_3$ gas flow ratio, 200 W RF power and 30 mm electrode distance. Moreover, vertical side wall is fabricated by anisotropy etching with 50% $O_2$ addition ratio and 25 mm electrode distance. Therefore, RIE of 3C-SiC films using $CHF_3$ could be applicable as fabrication process technology for high-temperature 3C-SiC MEMS applications.

  • PDF

Etching of an Al Solid by SiCl$_4$ Molecules at 600 eV

  • Seung Chul Park;Chul Hee Cho;Chang Hwan Rhee
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 1990
  • We present a theoretical investigation on the etching of an Al solid by $SiCl_4$ molecules at a collision energy of 600 eV. The classical trajectory method is employed to calculate Al etching yields, degree of anisotropy, kinetic energy distribution and angular distribution. The calculated results are compared with the reaction of a Cu solid by $SiCl_4$. The major products of the reaction are aluminum monomers and dimers together with considerable quantities of multimers. The Al solid shows better etching yield and better anisotropy than the Cu solid. This is consistent with the problem in the CMOS micro-fabrication of the CuAl and CuAlSi alloys. The relevance of these calculations for the dry etching of CuAl alloy is discussed.

Etching of Al and Cu Solids by $SiCl_4$ Molecules

  • Cho Chul Hee;Lee Woan;Rhee Chang Hwan;Park Seung Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.2
    • /
    • pp.187-192
    • /
    • 1992
  • The classical trajectory method, previously applied to the reactions of polyatomic molecules with fcc structured metal solids[S. C. Park, C. H. Cho, and C. H. Rhee, Bull. Kor. Chem. Soc., 11, $1(1990)]^1$ is extended to the collision energy dependence of the reaction of the Al solid by $SiCl_4$ molecules. We have calculated etching yields, degrees of anisotropy, kinetic energy distributions, and angular distributions for the reactions of the Al solid and compared with those for the reactions of the Cu solid. Over the range of collision energies we considered, the reactions of the Al soIid show higher etching yield and better anisotropy than the reactions of the Cu solid. Details of reaction mechanisms and the relevance of these calculations for the dry etching of CuAl alloy are discussed.

Two-Step Etching Characteristics of Single-Si by the Plasma Etching Techique (플라즈마 식각방법에 의한 단결정 실리콘의 Two-Step 식각특성)

  • Lee, Jin Hee;Park, Sung Ho;Kim, Mal Moon;Park, Sin Chong
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.1
    • /
    • pp.91-96
    • /
    • 1987
  • Plasma etching can obtain less damaged etch surface than reactive ion etching. This study was performed to get anisotropic etching characteristics of Si using two step etching technique with C2CIF5 and SF6 gas mixture. The results show that the etch rate and aspect ratio of silicon was increased with increment of SF6 contents. The bulging phenomenon on trench side wall in the plasma one-step etching technique was eliminated by the two step etching technique. The anisotropy was decreased from 12(at 120m Torr) to 2.2(at 400m Torr) with increasing the chamber pressure. At the low rf power (350 watts) anisotrpy of silicon was obtained 7 lower than that of high rf power (650 watts. A:~9). In Summary we obtained anisotropic etching profiles of silicon with e 6\ulcornerm depth by using the plasma two-step etching technique.

  • PDF

Operation Characteristic Analysis of a Comb Actuator due to a Anisotropy Variation in RIE Etching (RIE 식각시 발생하는 비등방도 변화에 따른 머리빗형 액튜에이터의 동작 특성 분석)

  • Kim, Bong-Soo;Park, Ho-Jun;Pak, Jung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.5
    • /
    • pp.368-376
    • /
    • 1999
  • This paper predicts the changes in the spring constant, the resonant frequency, the electrostatic force, and the displacement of a resonant structure due to non-ideal anisotropic RIE etching process. First, a $6\;{\mu}m$ thick polysilicon was etched by RIE and the anisotropy of the etched structure was measured as a function of a RF power, a $Cl_2$ flow rate and a chamber pressure. In the experimental results, an anisotropy was decreased as the RF power, the $Cl_2$ flow rate, or the chamber pressure was increased. A comb actuator's operation characteristic was predicted depending on the anisotropy variations in RIE etching. Comb actuators with three different support beam structures were investigated : fixed-fixed, crab-leg, and double crab-leg. As the RIE etch anisotropy becomes non-ideal, i.e. the cross section becomes rather a trapezoidal than a rectangular shape, it decreases spring constant, resonant frequency and electrostatic force of a comb actuator but it increases the displacement of the mass. Among the three structures, the comb actuator with double crab-leg support beams is more influenced by anisotropy variation in RIE etch than other two.

  • PDF

Etching Anisotropy Depending on the SiO2 and Process Conditions of NF3 / H2O Remote Plasma Dry Cleaning (NF3 / H2O 원거리 플라즈마 건식 세정 조건 및 SiO2 종류에 따른 식각 이방 특성)

  • Hoon-Jung Oh;Seran Park;Kyu-Dong Kim;Dae-Hong Ko
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.26-31
    • /
    • 2023
  • We investigated the impact of NF3 / H2O remote plasma dry cleaning conditions on the SiO2 etching rate at different preparation states during the fabrication of ultra-large-scale integration (ULSI) devices. This included consideration of factors like Si crystal orientation prior to oxidation and three-dimensional structures. The dry cleaning process were carried out varying the parameters of pressure, NF3 flow rate, and H2O flow rate. We found that the pressure had an effective role in controlling anisotropic etching when a thin SiO2 layer was situated between Si3N4 and Si layers in a multilayer trench structure. Based on these observations, we would like to provide further guidelines for implementing the dry cleaning process in the fabrication of semiconductor devices having 3D structures.

  • PDF

A Study on the Law Temperature Plasma Etching using Electron Cyclotron Resonance (전자 공명을 이용한 저온 플라즈마 식각에 관한 연구)

  • Lee, Seok-Hyun;Kim, Jae-Sung;Whang, Ki-Woong;Kim, Won-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.850-853
    • /
    • 1992
  • A cryogenic electron cyclotron resonance plasma etching system has been built to study wafer-temperature in the silicon etching characteristics. The wafer temperature was controlled from -150 to +30 $^{\circ}C$ during etching using the liquid nitrogen cooled helium gas. Although silicon was etched isotropically in $SF_6$ plasma at room temperatures, we found that it is possible to suppress the etch undercut in Si by reducing a substrate temperature without side wall passivation. In addition, the selectivity of silicon to photoresist was improved considerably at a low wafer temperature. Etch rates, anisotropy and selectivity to photo resist are measured as a function of the wafer temperature in the region of -125 $\sim$ 25$^{\circ}C$ and rf bias power of 20W $\sim$ 80W.

  • PDF

ICP ETCHING OF TUNGSTEN FOR X-RAY MASKS

  • Jeong, C.;Song, K.;Park, C.;Jeon, Y.;Lee, D.;Ahn, J.
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.869-875
    • /
    • 1996
  • In this article the effects of process parameters of inductively coupled plasma etching with $SF_6$ /$N_2$/Ar mixture gas and mask materials on the etched profile of W were investigated. While the etched profile was improved by $N_2$-addition, low working presure, and reduced $SF_6$ flow rate, the etching selectity (W against SAL resist) was decreased. Due to the difficulty of W etching with single layer resist, sputter deposited $Al_2O_3$ film was used as a hardmask. Reduction of required EB resist thickness through $Al_2O_3$ mask application could reduce proximity effect during e-beam patterning, but the etch anisotropy was degraded by decreased sidewall passiviation effect.

  • PDF