• Title/Summary/Keyword: Anisotropic Material Properties

Search Result 153, Processing Time 0.023 seconds

An Evolution of Nonlinear Dynamic Response of an Unreinforced Masonry Structure (비보강 조적조의 비선형 동적 거동의 전개)

  • Kim, Nam-Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.77-84
    • /
    • 2006
  • Unlike homogeneous material structure, the behavior of masonry structure is not perfectly elastic even in the range of small deformations because it is a non-homogeneous and anisotropic composite structural material, consisting of masonry units, mortar, and grout. This paper proposes a simplified way of investigating the evolution of the deformation and damage of the structure subjected to a series of successive ground motions with varying shaking. Especially, the most simple but useful algorithm of Fast Fourier Transformation (FFT) has been adopted to investigate the evolution of the deformation and damage of the structure tested on the shaking table. Moreover, the development of a hi-linear curve for an equivalent SDOF system which is obtained by exploiting the frequency and stiffness relationship was discussed. Finally, some important findings related to inelastic properties of the URM are summarized.

Effects of Nd Addition to Sr Ferrite Bonded Magnet (Sr 페라이트 본드자석의 Nd 첨가효과)

  • 정왕일;진성빈;강재덕;신용진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.120-123
    • /
    • 1997
  • In this paper, we deal with the effect on magnetic properties when Nd is added to Sr ferrite bonded magnet. First, we choose SrO$_{n}$.Fe$_2$O$_3$(n=5.9), which is nonstoichiomatric composition, as specimen ferrite. Then, we add 5wt% polyvinyl alcohol and calcinate at 12$25^{\circ}C$ under $N_2$ environment for carbon coating on chemical compound specimen. After that we obtain 1.2${\mu}{\textrm}{m}$ single domain powder through grinding process for 18 hours. The single domain Sr ferrite Powder is well mixed with silage coupling and calcium stearate of 1wt% Then, it is kneaded by using polyamide12 as a binder and is pelleted. After adding Nd-Fe-B powder to the pelleted specimen, we injection-mould it under magnetic field by using anisotropic mould. Especially, when we add l3wt% Nd-Fe-B powder to the polyamide12, we obtain excellent magnetic propertiecs which are $_{B}$H$_{C}$=2.65KOe, Br=3.16KG and (BH)$_{max}$=2.61MGOeOeOeOeOe

  • PDF

Prediction of Thermal and Elastic Properties of Honeycomb Sandwich Plate for Analysis of Thermal Deformation (열변형 해석을 위한 허니컴 샌드위치 평판의 열 및 탄성 물성치 예측에 관한 연구)

  • Hong, Seok Min;Lee, Jang Il;Byun, Jae Ki;Choi, Young Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.4
    • /
    • pp.347-355
    • /
    • 2014
  • Thermal problems that are directly related to the lifetime of an electronic device are becoming increasingly important owing to the miniaturization of electronic devices. To solve thermal problems, it is essential to study thermal stability through thermal diffusion and insulation. A honeycomb sandwich plate has anisotropic thermal conductivity. To analyze the thermal deformation and temperature distribution of a system that employs a honeycomb sandwich plate, the thermal and elastic properties need to be determined. In this study, the thermal and elastic properties of a honeycomb sandwich plate, such as thermal conductivity, coefficient of thermal expansion, elastic modulus, Poisson's ratio, and shear modulus, are predicted. The properties of a honeycomb sandwich plate vary according to the hexagon size, thickness, and material properties.

Catalytic hydrogenation-assisted preparation of melt spinnable pitches from petroleum residue for making mesophase pitch based carbon fibers

  • Lee, Dong Hun;Choi, Jisu;Oh, Young Se;Kim, Yoong Ahm;Yang, Kap Seung;Ryu, Ho Jin;Kim, Yong Jung
    • Carbon letters
    • /
    • v.24
    • /
    • pp.28-35
    • /
    • 2017
  • We demonstrated an effective way of preparing melt spinnable mesophase pitches via catalytic hydrogenation of petroleum residue (fluidized catalytic cracking-decant oil) and their subsequent thermal soaking. The mesophase pitches thus obtained were analyzed in terms of their viscosity, elemental composition, solubility, molecular weight, softening point and optical texture. We found that zeolite-induced catalytic hydrogenation under high hydrogen pressure contributed to a large variation in the properties of the pitches. As the hydrogen pressure increased, the C/H ratio decreased, and the solubility in n-hexane increased. The mesophase pitch with entirely anisotropic domains of flow texture exhibited good meltspinnability. The mesophase carbon fibers obtained from the catalytically hydrogenated petroleum residue showed moderate mechanical properties.

Review of Formability and Forming Property for Stainless Steel (스테인레스 강판의 가공특성과 성형성에 관한 고찰)

  • Kim, Y.S.;Park, J.G.;Ahn, D.C.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.20 no.3
    • /
    • pp.193-205
    • /
    • 2011
  • Because of its rustproof property, stainless steel is widely used in kitchen appliances, building materials, electronics, chemical plants and automobile exhausts. In addition, the utilization of stainless steel for fuel cell application is growing. As the demand for this material increases, it is necessary to study the basic properties of stainless steel such as corrosion resistance, heat transfer, formability, cutting or shearing ability and weldability. In this article, the mechanical properties, formability and press forming performance of stainless steel are reviewed. Since temperature and strain rate affect the press forming performance of STS304(austenitic) stainless steel, the influence of these parameters on the plastic behavior should be investigated. Moreover, measures for the prevention of ridging of STS430(ferritic) and delayed fracture of STS430, which respectively appear during and after press forming, should be considered. Recently, stainless steel sheets with a thickness lower than 0.2 mm have been widely used in applications for mobile phone, digital camera and fuel cell separator. Therefore, there is a growing interest of studying the grain size effect and plasticity at the crystal scale in order to understand the anisotropic behavior and micro forming ability of thin sheets. This review paper was written with the objective of helping engineers and researchers to understand the forming characteristics of stainless steel and to establish standards in plastic forming techniques.

A Study on Plastic Deformation Characteristics and Formability for Pure Titanium Sheet (순 티타늄 판재의 변형 특성 및 성형성 평가)

  • In, J.H.;Jeong, K.C.;Lee, H.S.;Kim, J.H.;Kim, J.J.;Kim, Young Su
    • Transactions of Materials Processing
    • /
    • v.27 no.5
    • /
    • pp.301-313
    • /
    • 2018
  • In this paper, tensile test was performed on pure titanium sheet (CP Ti sheet) with HCP structure in each direction to evaluate mechanical and surface properties and analyze microstructural changes during plastic deformation. We also evaluated forming limits of Ti direction in dome-type punch stretching test using a non-contact three-dimensional optical measurement system. As a result, it was revealed the pure titanium sheet has strong anisotropic property in yield stress, stress-strain curve and anisotropy coefficient according to direction. It was revealed that twinning occurred when the pure titanium sheet was plastic deformed, and tendency depends differently on direction and deformation mode. Moreover, this seems to affect the physical properties and deformation of the material. In addition, it was revealed the pure titanium sheet had different surface roughness changes in 0 degree direction and 90 degree direction due to large difference of anisotropy, and this affects the forming limit. It was revealed the forming limit of each direction obtained through the punch stretching test gave higher value in 90 degree direction compared with forming limit in 0 degree direction.

Large deflection analysis of laminated composite plates using layerwise displacement model

  • Cetkovic, M.;Vuksanovic, Dj.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.2
    • /
    • pp.257-277
    • /
    • 2011
  • In this paper the geometrically nonlinear continuum plate finite element model, hitherto not reported in the literature, is developed using the total Lagrange formulation. With the layerwise displacement field of Reddy, nonlinear Green-Lagrange small strain large displacements relations (in the von Karman sense) and linear elastic orthotropic material properties for each lamina, the 3D elasticity equations are reduced to 2D problem and the nonlinear equilibrium integral form is obtained. By performing the linearization on nonlinear integral form and then the discretization on linearized integral form, tangent stiffness matrix is obtained with less manipulation and in more consistent form, compared to the one obtained using laminated element approach. Symmetric tangent stiffness matrixes, together with internal force vector are then utilized in Newton Raphson's method for the numerical solution of nonlinear incremental finite element equilibrium equations. Despite of its complex layer dependent numerical nature, the present model has no shear locking problems, compared to ESL (Equivalent Single Layer) models, or aspect ratio problems, as the 3D finite element may have when analyzing thin plate behavior. The originally coded MATLAB computer program for the finite element solution is used to verify the accuracy of the numerical model, by calculating nonlinear response of plates with different mechanical properties, which are isotropic, orthotropic and anisotropic (cross ply and angle ply), different plate thickness, different boundary conditions and different load direction (unloading/loading). The obtained results are compared with available results from the literature and the linear solutions from the author's previous papers.

Resonance Frequency Analysis of A Baseball Bat by Impact Angle (가진 각도에 따른 야구배트의 공진주파수 분석)

  • Park, Sun-Hyang;Chung, Woo-Yang;Jung, Hwan-Hee;Lee, Sang-Joon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.777-783
    • /
    • 2015
  • Wood is an anisotropic material that shows the changes in hardness, quality and dimensions depending on the types of cells on three cross sections, size, array and so on. It can also be used in different ways according to its use, which requires a meticulous research, in order to maximize the utilization by understanding the nature and use; and by clarifying the theory and technologies. The research on relationship among wood's physical properties, density, and elasticity of modulus have been studied in Korea and abroad, but those studies were based on correlation gained through standardized specimen. Rather, the study on complete product is rare. Moreover, the previous reports are mostly concentrating on vibration mode and batting, though the wood's physical properties as a material have not been in the main focus. Therefore, this study will carried out for analyzing MOE through figuring material property out and comparing frequency adapting to the Canadian HardMaple bat. For comparison of material properties, we studied the annual ring and density of the bat; calculated the MOE with resonance frequency and formula (ASTM C1259); and verified the repulsive force of this material. As a result, the relevance of the resonance frequency and annual ring is weak, and in comparison in the grain direction in wood, the MOE value is higher when the grain direction in wood is excited horizontally than when is excited vertically, because the material is repulsive when grain direction is horizontal.

An Overview of Composite Material Qualification for Aircraft (항공기용 복합소재 인증 고찰)

  • Yong-Man Yang;Bum-Soo Yoon;Seung-Mok Jeon;Seung-Ken Lee;Un-Ryul Baek;Man-Seok Oh
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.361-368
    • /
    • 2023
  • Composite materials used in aircraft must be certified using approved materials to ensure the the airworthiness of the aircraft. Certification is carried out by verifying the physical properties and processes of the materials, and producing material and process specifications. The composite material certification system in ROK(Republic of Korea) has been established through the MOLIT(Ministry of Land, Infrastructure and Transport) pilot certification project for aircraft composite materials. Currently, the KIAST(Korea Institute of Aviation Safety Technology) operates and manages the certification and shared data system. This study identifies realm for improvement in the established certification system for aircraft composite materials based on empirical evidence and aims to propose measures for the certification and industrial promotion of domestically produced aircraft composite materials.

Coupled Analysis with Digimat for Realizing the Mechanical Behavior of Glass Fiber Reinforced Plastics (유리섬유 강화 플라스틱의 역학적 거동 구현을 위한 Digimat와의 연성해석 연구)

  • Kim, Young-Man;Kim, Yong-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.6
    • /
    • pp.349-357
    • /
    • 2019
  • Finite element method (FEM) is utilized in the development of products to realistically analyze and predict the mechanical behavior of materials in various fields. However, the approach based on the numerical analysis of glass fiber reinforced plastic (GFRP) composites, for which the fiber orientation and strain rate affect the mechanical properties, has proven to be challenging. The purpose of this study is to define and evaluate the mechanical properties of glass fiber reinforced plastic composites using the numerical analysis models of Digimat, a linear, nonlinear multi-scale modeling program for various composite materials such as polymers, rubber, metal, etc. In addition, the aim is to predict the behavior of realistic polymeric composites. In this regard, the tensile properties according to the fiber orientation and strain rate of polybutylene terephthalate (PBT) with short fiber weight fractions of 30wt% among various polymers were investigated using references. Information on the fiber orientation was calculated based on injection analysis using Moldflow software, and was utilized in the finite element model for tensile specimens via a mapping process. LS-Dyna, an explicit commercial finite element code, was used for coupled analysis using Digimat to study the tensile properties of composites according to the fiber orientation and strain rate of glass fibers. In addition, the drawbacks and advantages of LS-DYNA's various anisotropic material models were compared and evaluated for the analysis of glass fiber reinforced plastic composites.