• Title/Summary/Keyword: Anionic dye

Search Result 62, Processing Time 0.024 seconds

Removal of Anionic Dyes and Heavy Metal Ions Using Silica Nanospheres or Porous Silica Micro-particles Modified with Various Coupling Agents (다양한 커플링제로 표면 개질된 실리카들을 활용한 음이온성 염료 및 중금속의 제거)

  • Sung, Sohyeon;Lee, Minjun;Cho, Young-Sang
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.596-610
    • /
    • 2021
  • For application in adsorption process, we synthesized silica nanospheres by Stober method, and silica particles with wrinkled surface as well as macroporous silica particles were also fabricated by utilizing emulsion droplet as micro-reactors, followed by modification of the particle surface using suitable coupling agents containing amine groups. These particles exhibited improved adsorption capacity for heavy metal ions and anionic dyes, which were difficult to be removed by conventional silica particles without surface modification. Anionic dye, methyl orange could be removed almost completely by adsorption using porous silica particles modified using APTES. The adsorption efficiency of heavy metal like copper ions was close to 100%, when porous silica was used as adsorbent particles modified with AAPTS.

Colour Removal from Dyestuff Wastewater by Micro Bubbles Flotation Process (마이크로 버블 부상 공정에 의한 염료폐수의 색도 제거)

  • Kim, Myeng-Joo;Han, Sien-Ho
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.606-612
    • /
    • 2022
  • The purpose of this study is to convert hydrophobic dyestuff to hydrophilic dyestuff by reacting cationic collector with anionic dyestuff and reaction anionic collector with cationic dyestuff. The removal of colors from aqueous solutions and/or dispersions has been studied by dispersed-air flotation in a batch column. In this studies used generated micro bubble by ceramic gas diffuser having micro pore size for air flotation process. In this study, a ceramic gas diffuser with micro pore size was used to generate micro bubbles for the air flotation process. Two colours were used for the experiments: Basic Yellow 1 (cationic dyestuff) and Direct Orange 10 (anionic dyestuff). All two were effectively removed by flotation within 8 mins. Sodium dodecyl sulfate, sodium oleate (an anionic collector), and amines (a cationic collector) were found to be effective as collectors in the removal of color, which was found to be related to the pH of the solution and the amount of collector added to it, with high collector dosages causing the process to become pH-independent.

Adsorption of Azocarmine G dye on H2SO4-modified acacia sawdust

  • Celal Duran;Sengul Tugba Ozeken;Aslihan Yilmaz Camoglu;Duygu Ozdes
    • Membrane and Water Treatment
    • /
    • v.15 no.1
    • /
    • pp.41-50
    • /
    • 2024
  • Presence of hazardous dyes in water cause considerable risks to the human health and environment due to their potential toxicity and ecological disruptions. Therefore, in the present research, to suggest an alternative method for the retention of toxic Azocarmine G (ACG) dye from aqueous media, natural and H2SO4-modified acacia sawdust were performed for the first time as low-cost and efficient adsorbents. Based on batch experiments, it was determined that the best conditions for the developed dye retention process were an initial pH of 2.0 and an equilibrium time of 240 min. Analysis of the data using both pseudo-first order and pseudo-second order kinetic models showed that the retention of ACG onto the adsorbents predominantly occurred through chemical adsorption. Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models were employed to provide insights into the interaction between the adsorbate and adsorbent and the mechanism of the adsorption process. Maximum monolayer adsorption capacities of natural and H2SO4-modified acacia sawdust were determined as 28.01 and 64.90 mg g-1, respectively by Langmuir isotherm model. Results of the study clearly indicated that the modification of acacia sawdust with H2SO4 leads to a substantial increase in the adsorption performance of anionic dyes.

Adsorption Characteristics of Anionic Dye by Fe-Decorated Biochar Derived from Fallen Leaves (철 함침 낙엽 Biochar에 의한 음이온성 염료의 흡착특성)

  • Park, Jong-Hwan;Kim, Hong-Chul;Kim, Yeong-Jin;Seo, Dong-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.4
    • /
    • pp.289-296
    • /
    • 2020
  • BACKGROUND: There is a need for a revolutionary method to overcome the problem of biochar, which has relatively low adsorption capacity for existing anion pollutants, along with collectively recycling fallen leaves, a kind of forest by-product. Therefore, the objective of this study was to prepare iron-decorated biochar derived from fallen leaves (Fe-FLB), and to evaluate their adsorption properties to Congo red (CR) as anionic dye. METHODS AND RESULTS: The adsorption properties of CR by fallen leaves biochar (FLB) and Fe-FLB were performed under various conditions such as initial CR concentration, reaction time, pH and dosage with isotherm and kinetic models. In this study, Fe-FLB prepared through iron impregnation and pyrolysis of fallen leaves contained 56.9% carbon and 6.3% iron. Congo red adsorption by FLB and Fe-FLB was well described by Langmuir model and pseudo second order model and the maximum adsorption capacities of FLB and Fe-FLB were 1.1 mg/g and 25.6 mg/g, respectively. In particular, it was found that the adsorption of CR was occurred by chemical adsorption process by the outer boundary layer of Fe-FLB. CONCLUSION: Overall, the production of Fe-FLB using fallen leaves and using it as an anion adsorbent is considered to be a way to overcome the problem of biochar with relatively low anion adsorption in addition to the reduction effect of waste.

Charge Determination of Cationic Polyelectrolytes by Visual Titrimetry and Spectrophotometry (지시약 적정법 및 분광광도법에 의한 양이온 고분자 전해질의 전해밀도 정량)

  • Lee Min-Gye;Kam Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.14 no.6
    • /
    • pp.525-532
    • /
    • 2005
  • Polyelectrolyte titration, which was called colloid titration is based on the stoichiometric reaction between oppositely charged polyelectrolytes, This can be used, for instance, to determine the charge density of a cationic polyelectrolyte, using an anionic polyelectrolyte of known charge density, such as potassium polyvinyl sulfate (PPVS). The technique requires a suitable method of end-point detection and there are several possibilities. In this work, two methods have been investigated: visual titrimetry based on the color change of a cationic dye (o-toluidine blue, o-Tb) and spectrophotometry based on the absorbance change corresponding to the color change of the same dye. These have been applied to several cationic polyelectrolytes with different charge density and molecular weight. In all cases, the cationic charge was due to quaternary nitrogen groups. In the case of cationic dye, it was shown that the sharpness depends on the charge density of cationic polyelectrolyte. With the polyelectrolytes of lower charge density, the binding to PPVS is weaker and binding of the dye to PPVS can occur before all of the polyelectrolyte charge has been neutralized. However, by carrying out titrations at several polyelectrolyte concentrations, good linear relationships were found, from which reliable charge density values could be derived. Effects of pH and ionic strength were also briefly investigated. For cationic polyelectrolytes (copolymers of acrylamide and dimethylaminoethy] acrylate), there was some loss of charge at higher pH values, probably as a result of hydrolysis. Increasing ionic strength causes a less distinct color change of o-Tb, as a result of weaker electrostatic interactions.

Effect of Sodium Taurodeoxycholate on Biliary Excretion of Amaranth as an Anionic Model Drug in Rats (음이온 모델 화합물 아마란스의 담즙배설에 미치는 타우로데옥시콜레이트의 영향)

  • Shim, Chang-Koo;Chung, Suk-Jae
    • Journal of Pharmaceutical Investigation
    • /
    • v.16 no.3
    • /
    • pp.110-117
    • /
    • 1986
  • Plasma disappearance of amaranth (AM), a model compound of organic anionic drugs, was retarded by intravenous infusion of taurodeoxycholate (TDC), a representative bile acid, in the rat. Biliary excretion accounted for 30-60% of the systemic excretion of AM. AM seemed to be metabolised in the hepatocyte to form a compound that is excreted more rapidly into the bile than AM itself, considering apparent biliary clearance, $CL_{bil}$, is much larger than systemic clearance, $CL_s$. Decrease in $CL_{bil}$ by TDC infusion might be due to elevated plasma level rather than decreased biliary excretion of AM. Decreased distribution or urinary excretion of AM by TDC was supposed to be one of the probable reasons of elevated plasma level. Competitive inhibition between AM and TDC on tissue distribution and urinary excretion might explain the mechanism. The effect of TDC on the $CL_{bil}$ of methylene blue, a cationic dye, was quite different from that of AM, as reported previously by us. More intensive study would be necessary to elucidate the difference of biliary excretion between organic anions and cations.

  • PDF

Phase Behavior and Spontaneous Vesicle Formation in Aqueous Solutions of Anionic Ammonium Dodecyl Sulfate and Cationic Octadecyl Trimethyl Ammonium Chloride Surfactants

  • Kang, Kye-Hong;Kim, Hong-Un;Lim, Kyung-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.667-674
    • /
    • 2007
  • Phase behavior for the mixed aqueous surfactant systems of cationic octadecyl trimethyl ammonium chloride (OTAC)/anionic ammonium dodecyl sulfate (ADS)/water was examined. Below the total surfactant concentrations of 1.5 m molal, mixed micelles were formed. At the total surfactant concentrations higher than 1.5 m molal, there appeared a region where mixed micelles and vesicles coexist. As the surfactant concentration increased, the systems looked very turbid and much more vesicles were observed. The vesicles were spontaneously formed in this system and their existence was observed by negative-staining transmission electron microscopy (TEM), small-angle neutron scattering (SANS) and encapsulation efficiency of dye. The vesicle region was where the molar fraction α of ADS to the total mixed surfactant was from 0.1 to 0.7 and the total surfactant concentration was above 5 × 10-4 molality. The size and structure of the vesicles were determined from the TEM microphotographs and the SANS data. Their diameter ranged from 450 nm to 120μm and decreased with increasing total surfactant concentration. The lamellar thickness also decreased from 15 nm to 5 nm with increasing surfactant concentration and this may be responsible for the decrease in vesicle size with the surfactant concentration. The stability of vesicles was examined by UV spectroscopy and zeta potentiometry. The vesicles displayed long-term stability, as UV absorbance spectra remained unchanged over two months. The zeta potentials of the vesicles were large in magnitude (40-70 mV) and the observed longterm stability of the vesicles may be attributed to such high ζ potentials.

Photo Catalytic Activity of CNT-TiO2 Nano Composite in Degrading Anionic and Cationic Dyes

  • Kim, Sang-Jin;Im, Ji-Sun;Kang, Phil-Hyun;Kim, Tae-Jin;Lee, Young-Seak
    • Carbon letters
    • /
    • v.9 no.4
    • /
    • pp.294-297
    • /
    • 2008
  • A CNT-$TiO_2$ nano composite was prepared from titanium chloride ($TiCl_4$) via sol-gel process using multi walled carbon nano tube (MWCNT) followed by calcination at $450^{\circ}C$. Spectral analysis revealed that the formed $TiO_2$ resided on the carbon in anatase form. The effect of adsorption was investigated using aqueous solution of methylene blue and procion blue dye. The photochemical reaction of CNT-$TiO_2$ composite in aqueous suspensions was studied under UV illumination in batch process. The reaction was investigated by monitoring the discoloration of the dyes employing UV-Visible spectro-photometeric technique as a function of irradiation time. The catalyst composites were found to be efficient for the photodegradation of the dye.

Acid green-25 removal from wastewater by anion exchange membrane: Adsorption kinetic and thermodynamic studies

  • Khan, Muhammad Imran;Ansari, Tariq Mahmood;Zafar, Shagufta;Buzdar, Abdul Rehman;Khan, Muhammad Ali;Mumtaz, Fatima;Prapamonthon, Prasert;Akhtar, Mehwish
    • Membrane and Water Treatment
    • /
    • v.9 no.2
    • /
    • pp.79-85
    • /
    • 2018
  • In this work, batch adsorption of anionic dye acid green-25 (AG-25) from aqueous solution has been carried out at room temperature using anion exchange membrane (DF-120B) as a noval adsorbent. The effect of various experimental parameters such as contact time, membrane dosage, ionic strength and temperature on the adsorption of dye were investigated. Kinetic models namely pseudo-first-order, pseudo-second-order, Elovich, liquid film diffusion, Bangham and modified freundlich models were employed to evaluate the experimental data. Parameters like adsorption capacities, rate constant and related correlation coefficients for every model are calculated and discussed. It showed that adsorption of AG-25 onto DF-120B followed pseudo-first-order rate expression. Thermodynamic study indicates that adsorption of AG-25 onto DF-120B is an exothermic and spontaneous process.

Semiconductor coupled solar photo-Fenton's treatment of dyes and textile effluent

  • Raji, Jeevitha R.;Palanivelu, Kandasamy
    • Advances in environmental research
    • /
    • v.5 no.1
    • /
    • pp.61-77
    • /
    • 2016
  • $NanoTiO_2$ was synthesized by ultrasonication assisted sol-gel process and subjected to iron doping and carbon-iron codoping. The synthesized catalysts were characterized by XRD, HR-SEM, EDX, UV-Vis absorption spectroscopy and BET specific surface area analysis. The average crystallite size of pure $TiO_2$ was in the range of 30 - 33 nm, and that of Fe-$TiO_2$ and C-Fe $TiO_2$ was in the range of 7 - 13 nm respectively. The specific surface area of the iron doped and carbon-iron codoped nanoparticles was around $105m^2/g$ and $91m^2/g$ respectively. The coupled semiconductor photo-Fenton's activity of the synthesized catalysts was evaluated by the degradation of a cationic dye (C.I. Basic blue 9) and an anionic dye (C.I. Acid orange 52) with concurrent investigation on the operating variables such as pH, catalyst dosage, oxidant concentration and initial pollutant concentration. The most efficient C-Fe codoped catalyst was found to effectively destruct synthetic dyes and potentially treat real textile effluent achieving 93.4% of COD removal under minimal solar intensity (35-40 kiloLUX). This reveals the practical applicability of the process for the treatment of real wastewater in both high and low insolation regimes.