• Title/Summary/Keyword: Animal-fats

Search Result 148, Processing Time 0.023 seconds

Dietary Fats and Cancer (식이 지방과 암)

  • Choe, Myeon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.20 no.5
    • /
    • pp.513-518
    • /
    • 1991
  • Evidence from recent studies in several laboratories indicates a relationship between type or level of fat in the diet and occurance of tumor at specific sites. The essential fatty acids in fat and degree of their unsaturation are important to determine the influence of a dietary fats on carcinogenesis. Alteration of dietary fat can also change carcinogenesis of cell in several tissues. Dietary fats appear to be important in both initiation and promotion stages of carcinogenesis. Several possible mechanisms have been investigated how dietary fat could affect to carcinogenesis at cellular level. One potential mechanism of dietary fat on carcinogenesis is through modulation of protein kinase C activity in the cell.

  • PDF

Carcass traits, meat yield and fatty acid composition of adipose tissues and Supraspinatus muscle in goats fed blend of canola oil and palm oil

  • Adeyemi, K.D.;Ebrahimi, M.;Samsudin, A.A.;Sabow, A.B.;Sazili, A.Q.
    • Journal of Animal Science and Technology
    • /
    • v.57 no.12
    • /
    • pp.42.1-42.14
    • /
    • 2015
  • Background: Dietary fats can alter the deposition and distribution of body fats in ruminants. The deposition and distribution of body fat play a vital role in the quality of ruminant carcasses and are of great commercial value since they influence the profitability and consumer acceptability of ruminant meat. The current study examined the effects of dietary blend of 80 % canola oil and 20 % palm oil (BCPO) on carcass characteristics, meat yield and accretion of fatty acid (FA) in subcutaneous, omental, perirenal, and mesentery adipose depots and m. supraspinatus (SS) in goats. Methods: Twenty four Boer crossbred bucks (BW $20.54{\pm}0.47kg$) were randomly assigned to diets containing on DM basis 0, 4 and 8 % BCPO, fed for 100 d and harvested. Results: Diet had no effect (P > 0.05) on slaughter weight, dressing percentage, carcass and non-carcass components, meat yield, color, moisture and carotenoid contents and weight of adipose tissues in goats. The proportion of C18:1n-9 and cis-9 trans-11 CLA in the omental, perirenal and SS was higher (P < 0.05) in goats fed 4 and 8 % BCPO compared with the control goats. Dietary BCPO reduced (P < 0.05) the proportion of C14:0 in the omental, perirenal and mesentery depots, C18:0 in the perirenal depot, C16:0 in the SS and C16:1n-7 in the SS, omental and perirenal tissues. Dietary BCPO enhanced the proportion of C18:1 trans-11 Vaccenic and C18:3n-3 in SS and C20:5n-3 in SS and mesentery depot. No significant changes were found in the FA composition of subcutaneous depot. Conclusions: Results indicate that dietary BCPO can be utilized to alter the FA composition of adipose tissues without detrimental effects on carcass characteristics in goats. Nonetheless, dietary BCPO is not an effective repartitioning agent for body fats in goats.

Influence of rendering methods on yield and quality of chicken fat recovered from broiler skin

  • Lin, Liang-Kun;Tan, Fa-Jui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.6
    • /
    • pp.872-877
    • /
    • 2017
  • Objective: In order to utilize fat from broiler byproducts efficiently, it is necessary to develop an appropriate rendering procedure and establish quality information for the rendered fat. A study was therefore undertaken to evaluate the influence of rendering methods on the amounts and general properties of the fat recovered from broiler skin. Methods: The yield and quality of the broiler skin fat rendered through high and lower energy microwave rendering (3.6 W/g for 10 min and 2.4 W/g for 10 min for high power microwave rendering (HPMR) and high power microwave rendering (LPMR), respectively), oven baking (OB, at $180^{\circ}C$ for 40 min), and water cooking (WC, boiling for 40 min) were compared. Results: Microwave-rendered skin exhibited the highest yields and fat recovery rates, followed by OB, and WC fats (p<0.05). HPMR fat had the highest $L^{\star}$, $a^{\star}$, and $b^{\star}$ values, whereas WC fat had the highest moisture content, acid values, and thiobarbituric acid (TBA) values (p<0.05). There was no significant difference in the acid value, peroxide value, and TBA values between HPMR and LPMR fats. Conclusion: Microwave rendering at a power level of 3.6 W/g for 10 min is suggested base on the yield and quality of chicken fat.

Studies on Animal Models of Food Allergy (식품알레르기 연구를 위한 동물모델의 개발)

  • 주향란
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.3
    • /
    • pp.553-562
    • /
    • 1998
  • Food allergy is defined as an immunologically-mediated adverse reaction to food.The food allergy as a clinical entity has been recognized for many years, although there is yet no general consensus as to the incidence of this syndrome. One difficulty in studying food allergies has been the lock of a reasonable animal model in which reactions could be induced by orally administrating foods. It has been generally accepted that the initial target for an immediate reaction to food is the mast cells, within the gastronitestinal mucosa, and such cells are sensitize in vivo by food-specific immunoglobulin(Ig) E. Degranulation of these cells facilitates the entry of an antigenic epitope into the lymphatic system and blood stream, thereby causing further degranulation of the mast cells and basophils throughout the boy. Accordingly, the author attempted to develop an animal model that is indicative of evaluating IgE-mediated immediate hypersensitivity. It is also necessary to evaluate the effects of nutritional envioronments on dietary protein-dependent allergy and the regulatory mechanisms of dietary fats on IgE-mediated immune response. In this review, animal models to evaluate a food ingredient, effects of dietary fats and curcuminoids, milk whey protein hydrolysates on allergic reaction, and effect of dietary fat in splenic immune cells are presented.

  • PDF

Effects of Dietary Gum Phospholipid on Lipid Metabolism in Broiler Chicks

  • An, B.K.;Kang, C.W.;Nishiyama, H.;Iwata, T.;Tanaka, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.4
    • /
    • pp.506-510
    • /
    • 2000
  • This experiment was to determine the usefulness of gum safflower phospholipid as a feed ingredient. Forty female broiler chicks were divided into four groups and fed experimental diets containing following fats and oils; beef tallow (Tallow), the blend of safflower oil and palm oil (SP-oil), gum rapeseed phospholipid (Rap-PL), or gum safflower phospholipid (Saf-PL) for 21days. There were no differences in growth performances among the treatments. Abdominal fat weight tended to be reduced in the chicks fed. phospholipids. The activity of hepatic acetyl-CoA carboxylase was significantly reduced in the Rap-PL and Saf-PL as compared to that of Tallow. Feeding dietary phospholipids resulted in a slight reduction in total fat and triglyceride contents in the breast and thigh muscles. In addition, total fat and triglyceride contents in the thigh muscle were significantly decreased by dietary Saf-PL as compared to those of Tallow. These results suggested that dietary gum phospholipids, either from rapeseed or safflower, had desirable effects of lowing abdominal and muscle fats, and could be used as a feed ingredient for broiler diets.

Optimization of a Multi-Step Procedure for Isolation of Chicken Bone Collagen

  • Cansu, Ümran;Boran, Gökhan
    • Food Science of Animal Resources
    • /
    • v.35 no.4
    • /
    • pp.431-440
    • /
    • 2015
  • Chicken bone is not adequately utilized despite its high nutritional value and protein content. Although not a common raw material, chicken bone can be used in many different ways besides manufacturing of collagen products. In this study, a multi-step procedure was optimized to isolate chicken bone collagen for higher yield and quality for manufacture of collagen products. The chemical composition of chicken bone was 2.9% nitrogen corresponding to about 15.6% protein, 9.5% fat, 14.7% mineral and 57.5% moisture. The lowest amount of protein loss was aimed along with the separation of the highest amount of visible impurities, non-collagen proteins, minerals and fats. Treatments under optimum conditions removed 57.1% of fats and 87.5% of minerals with respect to their initial concentrations. Meanwhile, 18.6% of protein and 14.9% of hydroxyproline were lost, suggesting that a selective separation of non-collagen components and isolation of collagen were achieved. A significant part of impurities were selectively removed and over 80% of the original collagen was preserved during the treatments.

Recent strategies for improving the quality of meat products

  • Seonmin Lee;Kyung Jo;Seul-Ki-Chan Jeong;Hayeon Jeon;Yun-Sang Choi;Samooel Jung
    • Journal of Animal Science and Technology
    • /
    • v.65 no.5
    • /
    • pp.895-911
    • /
    • 2023
  • Processed meat products play a vital role in our daily dietary intake due to their rich protein content and the inherent convenience they offer. However, they often contain synthetic additives and ingredients that may pose health risks when taken excessively. This review explores strategies to improve meat product quality, focusing on three key approaches: substituting synthetic additives, reducing the ingredients potentially harmful when overconsumed like salt and animal fat, and boosting nutritional value. To replace synthetic additives, natural sources like celery and beet powders, as well as atmospheric cold plasma treatment, have been considered. However, for phosphates, the use of organic alternatives is limited due to the low phosphate content in natural substances. Thus, dietary fiber has been used to replicate phosphate functions by enhancing water retention and emulsion stability in meat products. Reducing the excessive salt and animal fat has garnered attention. Plant polysaccharides interact with water, fat, and proteins, improving gel formation and water retention, and enabling the development of low-salt and low-fat products. Replacing saturated fats with vegetable oils is also an option, but it requires techniques like Pickering emulsion or encapsulation to maintain product quality. These strategies aim to reduce or replace synthetic additives and ingredients that can potentially harm health. Dietary fiber offers numerous health benefits, including gut health improvement, calorie reduction, and blood glucose and lipid level regulation. Natural plant extracts not only enhance oxidative stability but also reduce potential carcinogens as antioxidants. Controlling protein and lipid bioavailability is also considered, especially for specific consumer groups like infants, the elderly, and individuals engaged in physical training with dietary management. Future research should explore the full potential of dietary fiber, encompassing synthetic additive substitution, salt and animal fat reduction, and nutritional enhancement. Additionally, optimal sources and dosages of polysaccharides should be determined, considering their distinct properties in interactions with water, proteins, and fats. This holistic approach holds promise for improving meat product quality with minimal processing.

Energy Efficiency and Nutrient Deposition in Early-Weaned Pigs, according to Fat Sources Containing Different Acidic Series

  • Bosi, P.;Jung, H.J.;Han, In K.;Cacciavillani, J.A.;Casini, L.;Mattuzzi, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.7
    • /
    • pp.995-1002
    • /
    • 2000
  • To evaluate energy efficiency and partition of nutrients, 32 piglets were weaned at 14 d of age and individually fed diets containing 15% fat from coconut oil (CO, medium chain saturated), high oleate sunflower oil (HOSO, n-9 series), soybean oil (SO, n-6 series), or linseed oil plus fish oil, (LF, n-3 series). After 4 weeks, the subjects were sacrificed to evaluate empty body composition and apparent ileal digestibility with the slaughter method. No statistical effect of dietary fat sources on growth was observed. The digestibility of fat from the coconut oil diet was higher than fats from the diets containing high levels of unsaturated fatty acids. The efficiency of use of metabolizable energy for growth averaged 63% and was not affected by the diet. Dietary fat composition was reflected strongly in backfat. Total body neutral and polar fatty acids were influenced too. For the whole body phospholipid fraction the ratio of n-6 to n-3 and the double bond index were 4.3, 5.8, 7.2, 0.78 and 69, 87, 89, 87 for CO, HOSO, SO, and LF respectively. These results show that for the coconut oil diet the degree of unsaturation of phospholipids in the body was lower and that, in the other diets, it did not differ, but double bond index was maintained with different n-6 to n-3 ratios in carcass fat. On the whole the data on body fat composition indicate that the dietary fat tended to be deposited in similar quantity in the body, whatever was the dietary fatty acid profile.

Physicochemical and Microbiological Properties of Yogurt-cheese Manufactured with Ultrafiltrated Cow's Milk and Soy Milk Blends

  • Lee, Na-Kyoung;Mok, Bo Ram;Jeewanthi, Renda Kankanamge Chaturika;Yoon, Yoh Chang;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.35 no.2
    • /
    • pp.205-210
    • /
    • 2015
  • The objective of this study was to develop yogurt-cheese using cow’s milk, ultrafiltrated cow’s milk, and soy milk. The addition of soy milk and ultrafiltrated milk increased the amount of protein in the yogurt-cheese. Yogurt-cheeses were made using cheese base using 10% and 20% soy milk with raw and ultrafiltrated cow’s milk, and stored at 4°C during 2 wk. The yield of yogurt-cheeses made with added soy milk was decreased and the cutting point was delayed compared to yogurt-cheese made without soy milk. Yogurt-cheese made using ultrafiltrated cow’s milk showed the highest yield. However, yogurt-cheese made with added soy milk had higher protein content and titratable acidity than yogurt-cheese made using raw and ultrafiltrated cow’s milk. Fat and lactose contents in the yogurt-cheese made with added soy milk were lower. Yogurt-cheeses made with added soy milk contained several soy protein bands corresponding to the sizes of α2-, β-, and κ-casein band. Yogurt-cheese made with added soy milk had similar elasticity to yogurt-cheese made without soy milk but had lower cohesiveness. There was no significant difference in the number of lactic acid bacteria in the different cheeses, as all had over 8.0 Log CFU/g. Considering these data and the fact that proteins and fats of vegetable origin with high biological value were observed as well as unsaturated fats, yogurt-cheese made with added soy milk can be considered to be a functional food.