• Title/Summary/Keyword: Animal oil

Search Result 854, Processing Time 0.028 seconds

Monitoring of Used Frying Oils and Frying Times for Frying Chicken Nuggets Using Peroxide Value and Acid Value

  • Park, Jung-Min;Kim, Jin-Man
    • Food Science of Animal Resources
    • /
    • v.36 no.5
    • /
    • pp.612-616
    • /
    • 2016
  • This study was conducted to investigate the condition of frying oil used for frying chicken nuggets in a deep fryer. The acidification of the frying oils used, soybean oil (SB), canola oil (CA), palm oil (PA), and lard (LA), were determined as peroxide value, acid value, and fatty acid composition, after chicken nuggets were fried in them for 101 times. The acid value and peroxide value obtained were 5.14 mg KOH/g and 66.03 meq/kg in SB, 4.47 mg KOH/g and 71.04 meq/kg in CA, 2.66 mg KOH/g and 15.48 meq/kg in PA, and 5.37 mg KOH/g and 62.92 meq/kg in LA, respectively. The ranges of the major fatty acid contents were palmitic acid, 8.91-45.84%; oleic acid, 34.74-58.68%; linoleic acid, 10.32-18.65%; and stearic acid, 2.28-10.86%.Used frying oils for food except animal products have a legal limit for the freshness standard, set by the Food Codex regulations (AV<2.5, POV<50). Therefore, this study could help develop a freshness standard for frying oils used for animal products such as chicken nuggets. Based on the quality limits associated with food regulations stated, we suggested that the estimated frying times before acceptable freshness was exceeded were 41 for SB, 38 for LA, 53 for CA, and 109 for PA. This data may be useful in determining food quality regulations for frying oil used for animal products.

Effects of perilla oil on plasma concentrations of cardioprotective (n-3) fatty acids and lipid profiles in mice

  • Chung, Keun Hee;Hwang, Hyo Jeong;Shin, Kyung Ok;Jeon, Woo Min;Choi, Kyung Soon
    • Nutrition Research and Practice
    • /
    • v.7 no.4
    • /
    • pp.256-261
    • /
    • 2013
  • The aim of this study was to examine the effects of perilla oil as well as several vegetable oils, including flaxseed oil, canola oil, and rice bran oil on plasma levels of cardioprotective (n-3) polyunsaturated fatty acids in mice by feeding each vegetable oil for a period of eight weeks. Concentrations of docosapentaenoic acid (DHA) and eicosapentaenoic acid (EPA), fish-based (n-3) polyunsaturated fatty acids, showed an increase in the plasma of mice fed perilla and flaxseed oils compared to those of mice in the control group (P < 0.05), whereas rice bran and canola oils did not alter plasma DPA and EPA concentrations. Arachidonic acid concentration was increased by feeding rice bran oil (P < 0.05), but not canola, flaxseed, or perilla oil. In addition, oleic acid, linoleic acid, and docosahexaenoic acid concentrations were altered by feeding dietary rice bran, canola, perilla, and flaxseed oils. Findings of this study showed that perilla oil, similar to flaxseed oil, is cardioprotective and could be used as an alternative to fish oil or even flaxseed oil in animal models.

Effects of dietary supplementation with a combination of plant oils on performance, meat quality and fatty acid deposition of broilers

  • Long, Shenfei;Xu, Yetong;Wang, Chunlin;Li, Changlian;Liu, Dewen;Piao, Xiangshu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.11
    • /
    • pp.1773-1780
    • /
    • 2018
  • Objective: This study was to evaluate effects of mixed plant oils (identified as mixed oil 1 [MO1] and mixed oil 2 [MO2]) on performance, serum composition, viscera percentages, meat quality, and fatty acid deposition of broilers. Methods: A total of 126 one-day-old Arbor Acres male broiler chicks (weighing $44.91{\pm}0.92g$) were randomly allocated to 1 of 3 treatments with 7 replicate pens per treatment (6 broilers per pen). Dietary treatments included a corn-soybean basal diet supplemented with 3% soybean oil (CTR), basal diet with 3% MO1 (a mixture of 15% corn oil, 10% coconut oil, 15% linseed oil, 20% palm oil, 15% peanut oil and 25% soybean oil; MO1), or basal diet with 3% MO2 (a combination of 50% MO1 and 50% extruded corn; MO2). The trial consisted of phase 1 (d 1 to 21) and phase 2 (d 22 to 42). Results: Compared to CTR, broilers fed MO (MO1 or MO2) had greater (p<0.05) average daily gain in phase 1, 2, and overall (d 1 to 42), redness in thigh muscle, concentrations of serum glucose, serum albumin, saturated fatty acids (SFA) and n-6/n-3 polyunsaturated fatty acids (PUFA) ratio in breast muscle, while these broilers also showed lower ($p{\leq}0.05$) drip loss and concentrations of C18:3n-3 and PUFA/SFA ratio in breast muscle. Broilers fed MO2 had higher (p<0.05) liver percentage, while broilers fed MO1 had lower ($p{\leq}0.05$) feed conversion ratio in phase 1 and increased (p<0.05) contents of C18:2n-6, C20:5n-3, C22:6n-3, and n-3 PUFA in breast muscle compared to CTR. Conclusion: Mixed plant oils had positive effects on performance, serum parameters, meat quality, liver percentage and fatty acid deposition in broilers, which indicates they can be used as better dietary energy feedstocks than soybean oil alone.

Fuel Qualities and Combustion Characteristics of Animal-Fats Biodiesel for Agricultural Hot Air Heaters

  • Kim, Youngjung;Park, Seokho;Kim, Youngjin;Kim, Chungkil
    • Journal of Biosystems Engineering
    • /
    • v.37 no.5
    • /
    • pp.296-301
    • /
    • 2012
  • Purpose: Combustion and fuel qualities of the animal-fats biodiesel as a heating fuel for agricultural hot air heater were studied. Methods: Biodiesel (BD) was made from animal-fats by reacting with methanol and potassium hydroxide in the laboratory. The biodiesel made in the laboratory was tested for fuel and combustion qualities. Results: The kinematic viscosity and the calorific values of the biodiesels were measured. Kerosene based biodiesel, BD20 (K) showed 18 cSt at $-20^{\circ}C$. It seemed that BD100 was not suitable for a heating fuel under some temperature. As BD content increased, the calorific value decreased up to 40,000 J/g for BD100, while the calorific value of light oil was 45,567 J/g showing difference of 5,567 J/g, about 12% difference. Several different fuels including BD20 (biodiesel 20% + light oil 80%), BD50 (biodiesel 50% + light oil 50%), BD100 (biodiesel 100%), and light oil were tested for fuel combustion qualities for agricultural hot air heater, and their combustion performances were compared and analyzed. Flame dimensions of biodiesels and light oils were almost the same shape at the same combustion condition. Generally, the $CO_2$ amounts of BDs were greater than light oil. However, in this study the differences were minor, so there was no significant difference existed between the BDs combustion and light oil. Conclusions: It seemed that quality was good for heating oil for agricultural hot air heater because of showing no barriers for continuous combustion and proper exhaust gas temperature and $CO_2$ amount discharged. But, for fuel fluidity for higher BD content fuel could be a detrimental problem in situations where the outdoor temperature is lowered. As BD content increased, calorific value decreased up to 40,000 J/g for BD100. Calorific value difference between BD20 and light oil was about 1,360 J/g.

A Study on the Emission Characteristics for Blended Power Bio-Fuel Oil (발전용 바이오중유의 혼합비율에 따른 배출가스 특성 연구)

  • HA, JONG-HAN;JEON, CHEOL-HWAN;KWON, YONG-CHAI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.5
    • /
    • pp.484-492
    • /
    • 2015
  • As our government is actively introducing the RPS (Renewable Portfolio Standards) as a national renewable energy obligation policy, power producers are using the various renewable energy to meet the RPS supply quota since 2012. Recently, it is appling to use power bio-fuel oil in bio-fuel oil demonstration project with power companies. In general, power bio-fuel oils are composed of mixture products of vegetable oil, animal fat, fatty acid ester and waste oil. It is already developing for a power plant as a renewable energy abroad. In Korea, it is studying a 100% combustion and blended combustion of heavy fuel oil and bio-fuel oil. In this study, we investigated fuel characteristics of mixed power bio-fuel oil and its emission performance. Especially, it was reduced emissions of bio-oil in industrial boilers due to bio-fuel properties as compare with fuel oil.

Study on the Subacute Toxicity of Complex of Pine Needle Oil and Korean Medicinal Herbs against Rats

  • Park, Kap Joo;Ahn, Ki Heung;Lee, Hyung Hoan
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.4
    • /
    • pp.513-518
    • /
    • 2004
  • Pine needle oil and Korean medicinal herbs (KMH) are known as effective therapeutic agents on various blood vessel disease. We have already reported the ameliorative effect of complex of pine needle oil and Korean medicinal herbs against hyperlipidemia. But safety and non - toxicity of pine needle oil and Korean medicinal herbs to normal animal cells have not been studied clearly. In this study, we investigated whether pine needle oil and Korean medicinal herbs show side effects on rat or not. These materials were administered to rats, and subacute toxicity was examined by measuring the hematological values, CBC differentiation, biochemical levels of blood (TP, total protein; albumin; ALP, alkaline phosphotase; AST, aspatate aminotrans- ferase; ALT, alanine aminotransferase; T-Chol., total cholesterol; T-Bil., total bilirubin) and urine analysis, suggesting that the sample have no side effects and cytotoxicity. These results indicate that the complex of pine needle oil and Korean medicinal herbs may effective non- toxic, safety therapeutic agents on hepatocytes and hyperlipidemia.

Effect of Different Levels of Vegetable Oil for the Manufacture of Dahi from Skim Milk

  • Munzur, M.M.;Islam, M.N.;Akhter, S.;Islam, M.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.7
    • /
    • pp.1019-1025
    • /
    • 2004
  • The experiment was conducted to investigate the feasibility of using vegetable oil and non-fat dry milk (powdered milk) with skim milk for the preparation of dahi. In this experiment, six different types of dahi were prepared from whole milk, skim milk and admixture of non-fat dry milk with different levels of vegetable oil. The prepared dahi samples were subjected to physical, chemical and microbiological analysis to evaluate their quality. It was observed that the addition of non-fat dry milk and vegetable oil with skim milk improve the physical qualities (smell and taste, body and consistency, color and texture) of prepared dahi samples. Addition of non-fat dry milk and vegetable oil also improve the total solids, fat and protein content of dahi samples. It is concluded that the addition of vegetable oil at a rate of 4 to 6% together with 5% non-fat dry milk gave the best result.

Lipid Sources with Different Fatty Acid Profile Alters the Fatty Acid Profile and Quality of Beef from Confined Nellore Steers

  • Fiorentini, Giovani;Lage, Josiane F.;Carvalho, Isabela P.C.;Messana, Juliana D.;Canesin, Roberta. C.;Reis, Ricardo A.;Berchielli, Telma T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.7
    • /
    • pp.976-986
    • /
    • 2015
  • The present study was conducted to determine the effects of lipid sources with different fatty acids profile on meat fatty acids profile and beef quality traits of Nellore. A total of 45 Nellore animals with an average initial body weight of $419{\pm}11kg$ (at $15{\pm}2mo$) were distributed in a completely randomized design consisting of 5 treatments and 9 replicates. The roughage feed was maize silage (600 g/kg on a dry matter [DM] basis) plus concentrate (400 g/kg on a DM basis). The dietary treatments were as follows: without fat (WF), palm oil (PO), linseed oil (LO), protected fat (PF), and soybean grains (SG). No effects of lipid sources were observed (p>0.05) on beef color, pH, water-holding capacity, and sarcomere length. Beef from cattle fed PO had greater shear-force values (p<0.05) compared to beef from cattle fed WF. Deposition of main unsaturated fatty acids (oleic, linoleic, and linolenic) was greater in treatments WF, SG, and LO, respectively, while the values of conjugated linoleic acid (CLA) were greater when animals were fed LO. The inclusion of LO in the diet enhances the concentration of CLA in longissimus muscle and subcutaneous fat besides improving the atherogenicity index and elongase activity. As such, LO can be used with the aim to improve the quality of beef from confined Nellore cattle. Conversely, the use of PO is not recommended since it may increase the concentration of undesirable unsaturated fatty acids in muscle and subcutaneous fat, shear-force and the atherogenicity index.

Evaluation of black soldier fly larvae oil as a dietary fat source in broiler chicken diets

  • Kim, Byeonghyeon;Bang, Han Tae;Kim, Ki Hyun;Kim, Min Ji;Jeong, Jin Young;Chun, Ju Lan;Ji, Sang Yun
    • Journal of Animal Science and Technology
    • /
    • v.62 no.2
    • /
    • pp.187-197
    • /
    • 2020
  • The present study was conducted to evaluate the effects of black soldier fly larvae oil (BSFLO) from the black soldier fly larvae (BSFL) as a partial or total replacement of soybean oil (SBO) on growth performance, fatty acid (FA) profile, and meat quality of broiler chickens from 1 to 5 wk of age. A total of 210 male broiler chickens (Ross 308) at one-day of age were randomly allotted to 3 dietary treatments (10 replicates and 7 birds/group): a basal control diet (CON), the basal diet in which the SBO was replaced by 50% (50 BSFLO) or 100% (100 BSFLO) of BSFLO. The growth performance, physical measurements and chemical traits of leg meat, and sensory analysis of breast meat were not influenced by diets. However, the relative weight (g/kg) of gizzard of CON was significantly higher (14.85, 12.52, and 13.02 for CON, 50 BSFLO, and 100 BSFLO; p < 0.05) than that of other treatments. As expected, the FA profile of breast meat was affected by BSFLO inclusion. The proportion (%) of saturated fatty acid (SFA) was increased (27.16, 27.58, and 28.72 for CON, 50 BSFLO, and 100 BSFLO; p < 0.05) by BSFLO inclusion and the percentage (%) of MUFA was also increased (43.36, 44.58, and 48.55 for CON, 50 BSFLO, and 100 BSFLO; p < 0.01). On the contrary, the proportion (%) of PUFA was decreased (29.49, 27.84, and 22.74 for CON, 50 BSFLO, and 100 BSFLO; p < 0.01). In conclusion, the present study suggests that the replacement of BSFLO did not show an adverse effect on growth performance and it could be an ingredient as a dietary fat source for a broiler diet.

Effects of black soldier fly larvae (Hermetia illucens) oil on cecal microbiota in broilers

  • Kim, Byeonghyeon;Bang, Han Tae;Jeong, Jin Young;Kim, Min Ji;Kim, Ki Hyun;Chun, Ju Lan;Reddy, Kondreddy Eswar;Ji, Sang Yun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.2
    • /
    • pp.219-227
    • /
    • 2020
  • Among insect species, black soldier fly larvae (BSFL) is a promising ingredient for animal feed as a dietary source. Moreover, BSFL contains a high content of lauric acid (C12:0), which has antimicrobial effects. Therefore, this study evaluated the effect of BSFL oil (BSFLO) as a partial or total replacement of soybean oil (SBO) on the cecal microbiota in broilers. A total of 210 male broiler chickens (Ross 308) at one-day of age were randomly allotted to 3 dietary treatments (10 replicates and 7 birds/group): a basal control diet (CON), the basal diet in which SBO was replaced by 50% (50 BSFLO) or 100% (100 BSFLO) BSFLO. At the end of the study (d 35), 18 birds (6 broilers/treatment) were randomly selected and slaughtered. Samples of cecal digesta were collected to verify their cecal microbiota. Overall, 235,978 gene sequences were generated, and a total of 4,398 operational taxonomic units were identified in the three groups. At the phylum level, Firmicutes was the dominant phyla in all three groups. At the genus level, Faecalibacterium was the dominant genera in all the treatments. There were no significant differences in the relative abundances of all the genera between the BSFLO groups and CON. However, the genus Erysipelatoclostridium was more abundant in the 50 BSFLO group than in the CON (p < 0.05). In conclusion, the substitution of SBO with BSFLO in broiler diets had no negative effect on the cecal microbiota of broilers.