• Title/Summary/Keyword: Animal manures

Search Result 44, Processing Time 0.028 seconds

Relationship between Soil Management Methods and Soil Chemical Properties in Protected Cultivation

  • Kang, Yun-Im;Lee, In-Bog;Par), Jin-Myeon;Kang, Yong-Gu;Kim, Seung-Heui;Ko, Hyeon-Seok;Kwon, Joon-Kook
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.4
    • /
    • pp.333-339
    • /
    • 2009
  • Various cultural practices have been promoted as management options for enhancing soil quality and health. The use of soil management methods can cause changes in fertility by affecting soil chemical properties. This study aimed to evaluate interactions between soil chemical properties and soil management methods in protected cultivation, and to classify soil management methods that similarly affect soil chemical properties. Water-logging and irrigation reduced soil pH and available $P_2O_5$ content. Application of animal manures has a positive effect on levels of organic matter, Av.$P_2O_5$, K, Zn, and Cu. The electrical conductivites tened to be low in the application of organic amendments, including rice and wood residues. Deeper plowing caused a reduction in Ca content. Practicing soil nutrient-considering fertilization and fertigation did not exert an influence on nutrient element contents. In a cluster analysis of the soil management methods according to major nutrients, low similarities were found with deeper plowing and crop rotation with rice in comparison with other practices. In a cluster analysis by minor nutrient characteristics, crop rotation and application of animal manures and rice residues were linked at a high Ward's distance, while other practices were found to be relatively low distinct. Each soil management method has a similar or different effect on soil chemical properties. These results suggest the necessity of establishing limits and standards according to the effects of soil management methods on soil chemical properties for economic soil practices.

Biochemical Methane Potential of Animal Manure and Cultivated Forage Crops at the Reclaimed Tideland (가축분뇨와 간척지 사료작물의 메탄발생량)

  • Heo, Nam-Hyo;Lee, Seung-Heon;Kim, Byeong-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.79-82
    • /
    • 2008
  • Anaerobic biodegradability(AB), which can be determined with the ultimate methane yield by the decomposition of organic materials, is one of the important parameters for the design and the operation of anaerobic digestion plant. In this study, Biochemical Methane Potential(BMP) test has been carried out to evaluate the methane yield of animal manures, such as pig and cattle slurries, and different forage crops cultivated at the reclaimed tideland, such as maize, sorghum, barley, rye, Italian ryegrass(IRG), rape, rush and sludge produced from slaughterhouse wastewater treatment plant(SWTP). In the ultimate methane yield of animal manure, that of pig slurry(no used a EM) was 407 $mlCH_4/gVS_{fed}$ higher than 242 $mlCH_4/gVS_{fed}$ of cattle slurry. The ultimate methane yield of spike-crop rye was 442.36 $mlCH_4/gVS_{fed}$ the highest among different forage crops, the other showed the value above a methane yield of 300 $mlCH_4/gVS_{fed}$. The forage crop could be used as a good substrate to improve the methane production in anaerobic co-digestion together with animal manure.

  • PDF

A Review on the Emission Sources of Ammonia and the Factors Affecting Its Loss

  • Das, Piw;Sa, Jae-Hwan;Kim, D.S.;Kim, K.H.;Jeon, E.C.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.E2
    • /
    • pp.47-56
    • /
    • 2007
  • Among all the nitrogen species present in the atmosphere, ammonia forms a considerable portion along with the nitrogen oxides. The major sources of atmospheric ammonia are animal feedlot operations including emission from excreta of domestic animals and agricultural activities, followed by emission from synthetic fertilizers, biomass burning and to some lesser extent, fossil fuel combustion. Ammonia emission factor, expressed as the weight of ammonia per unit weight, volume, or duration of the activity emitting it, is generally used in developing emission estimates for emission inventories. The factors determining ammonia loss from soil or from manures are the temperature, pH, humidity, precipitation and the velocity of wind above it.

Codex Guideline for Organically Grown Food and its Implementation of Organic Crop and Animal Production in Korea (Codex 유기식품규격 내용과 한국 유기경종과 축산의 적응 실천)

  • 손상목
    • Korean Journal of Organic Agriculture
    • /
    • v.8 no.3
    • /
    • pp.17-34
    • /
    • 2000
  • This paper is aim to report the core aspects of Codex guideline for organically grown food which is finalized by FAO/WHO Codex Alimentarius Commission on May 2000 in 28th session of the Codex committee on food labelling. The chapter of animal production had discussed for a long time before it was finalized in Ottawa/canada as well as use of GMO(Genetically modified organism), manure from factory farming, animal welfare, and fodder inputs consisting of at least 85% for ruminants and 80% for non-ruminants. As the guideline for Codex set out the several things which is very difficult for Asian country, Organic farmer in Korea should pay an attention to maintain/increase the fertility and biological activity by cultivation of legumes, green manures or deep-rooting plants in an appropriate multi-annual rotation programme, and incorporation in the soil of organic material from holding producing in accordance with the guidelines. Pest, diseases and weeds should be controlled by choice of appropriate varieties, appropriate rotation, mechanical cultivation, diversified ecosystems, flame weeding, animal weeding and steam sterilization. The use of plant growth hormone, GMO and manure from industrial management system are not allowed, and closed recycling system, rotation, resistant seeds again pest and disease should be practiced in organic farming. But these are not unfortunately practiced in the country. In the conclusion it was strongly suggested to enact the Basic Standard for Korean organic agriculture which contains the core principles of Codex guidelines, and to try the importation of the most advanced theory, skills and technology from leading country in organic farming.

  • PDF

Biogas Production from Agricultural Wastes and Residues in Tropical Region (열대지역(熱帶地域)에서 농산폐유기물(農産廢有機物)을 원료(原料)로한 멘탄가스발생(發生))

  • Joo, Yeong-Hee;Jeon, Yong-Woon;Calilung, Edwin J.;Elepano, Arnold R.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.4
    • /
    • pp.325-335
    • /
    • 1985
  • Biogas production from agricultural wastes were summarized as follows: 1. Biogas Generation Characteristics of Various Manures and Residues a. Gas yield from crop residues like rice straw, rice hull, corn stalk and coconut husk can be improved by addition of animal manures. b. Gas yield from coconut husk can be improved through aerobic fermentation for at least one week before loading in the digester. c. Gas yield from fresh rice straw is better than from pre-fermented one, whether alone or in combination with animal manures. d. Initial study has shown that fresh azolla can be substituted for animal manures in manurerice straw combinations and gas yield derived based on unit volatile solids loaded is actually better than for manure-residue combinations. e. Gas production is highly sensitive to substrate pH and becomes almost nil at a pH of below 6. 2. Effect of ambient conditions and other factors on biogas production in a house hold-size digester. a. Results showed that compaction of rice straw in straw-manure combination can reduce gas yield compared with loosely mixed straw. b. The effective gas production period extended to 70 days using freshly threshed rice straw and fresh cattle manure as feed material. c. Underground and above ground digesters with shade have relatively more stable substrate temperature than aboveground exposed digesters. This relative temperature instability may likely be the reason for lower gas yield for the exposed aboveground digester loaded with loose straw-cattle manure substrate, compared with the underground digester with the same substrate. 3. Economic Analysis a. Based on prevailing costs of fuel, materials, and labor in the Philippines, biogas produced from the household size system is cheaper than either LPG or kerosene. b. If other benefits like organic fertilizer, pollution control and convenience are considered, biogas will surely be the best alternative fuel source.

  • PDF

Eliminating Waste : Strategies for Sustainable Manure Management - Review -

  • Richard, T.L.;Choi, H.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.7
    • /
    • pp.1162-1169
    • /
    • 1999
  • Modern livestock production facilities face both challenges and opportunities with respect to sustainable manure management practices. Nutrient recycling is constrained by the size of modern livestock operations, the low nutrient density of liquid manures, and the spatial and temporal variability of manure nutrient concentrations. These constraints can and must be addressed or farmers will be increasingly drawn to nutrient wasting strategies such as anaerobic lagoons, wetlands, and other systems designed to treat and discharge nutrients to the environment. Intentional discharge of nutrients is difficult to justify in a sustainable agricultural production system, since replacing those nutrients through chemical fertilization requires considerable expenditure of energy. In contrast, there are several currently viable technologies which provide the homogenization and stabilization needed to successfully compete against chemical fertilizers, including composting, pelletization, and anaerobic digestion. Some of these technologies, particularly anaerobic digestion and composting, also open up increased opportunities to market the energy and nutrients in manure to non-agricultural uses. Future advances in biotechnology are likely to demonstrate additional options to transform manure into fuels, chemicals, and other non-agricultural products.

Validation and Recommendation of Methods to Measure Biogas Production Potential of Animal Manure

  • Pham, C.H.;Triolo, J.M.;Cu, T.T.T.;Pedersen, L.;Sommer, S.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.6
    • /
    • pp.864-873
    • /
    • 2013
  • In developing countries, biogas energy production is seen as a technology that can provide clean energy in poor regions and reduce pollution caused by animal manure. Laboratories in these countries have little access to advanced gas measuring equipment, which may limit research aimed at improving local adapted biogas production. They may also be unable to produce valid estimates of an international standard that can be used for articles published in international peer-reviewed science journals. This study tested and validated methods for measuring total biogas and methane ($CH_4$) production using batch fermentation and for characterizing the biomass. The biochemical methane potential (BMP) ($CH_4$ NL $kg^{-1}$ VS) of pig manure, cow manure and cellulose determined with the Moller and VDI methods was not significantly different in this test (p>0.05). The biodegradability using a ratio of BMP and theoretical BMP (TBMP) was slightly higher using the Hansen method, but differences were not significant. Degradation rate assessed by methane formation rate showed wide variation within the batch method tested. The first-order kinetics constant k for the cumulative methane production curve was highest when two animal manures were fermented using the VDI 4630 method, indicating that this method was able to reach steady conditions in a shorter time, reducing fermentation duration. In precision tests, the repeatability of the relative standard deviation (RSDr) for all batch methods was very low (4.8 to 8.1%), while the reproducibility of the relative standard deviation (RSDR) varied widely, from 7.3 to 19.8%. In determination of biomethane concentration, the values obtained using the liquid replacement method (LRM) were comparable to those obtained using gas chromatography (GC). This indicates that the LRM method could be used to determine biomethane concentration in biogas in laboratories with limited access to GC.

Establishment of Database and Distribution Maps for Biomass Resources (바이오매스 자원 DB 구축과 분포도 작성)

  • Kim, Yi-Hyun;Nam, Jae-Jak;Hong, S. Young;Choe, Eun-Young;Hong, Seung-Gil;So, Kyu-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.379-384
    • /
    • 2009
  • This study was carried out to understand the national and regional distribution of the biomass resources produced in Korea annually via establishing database (DB) and distribution maps of biomass resources data including as livestock manures, food wastes and agricultural by-product. The information of the annual production of each biomass resources was obtained from Ministry for Food, Agriculture, Forestry and Fisheries (MIFAFF), Ministry of Environment (MOE) and National Statistical Office (NSO). Based on biomass resources data, we established database architecture table about livestock manures and food wastes. The distribution maps for the total amount of manures produced from each livestock animal were built up in both national and regional scales and used for analysis of the space-based and time-based distribution of the manure resources. Distribution maps for food wastes and agricultural by-product were also produced, respectively. It was shown that the analysis through resource mapping can be used to identify the sources of collectable biomass feasibly determining suitable region for establishment of a biomass-energy production. The biomass distribution maps graphically provide the information regarding biomass resources to policy-makers, farmers, general users and it was expected to be utilized for policy-making of environmental-friendly agriculture and bio-energy.

Biochemical Methane Potential and Biodegradability of Animal Manure and Cultivated Forage Crops at the Reclaimed Tideland (가축분뇨와 간척지 사료작물의 메탄발생량과 생분해도)

  • Heo, Nam-Hyo;Lee, Seung-Heon;Kim, Byeong-Ki
    • New & Renewable Energy
    • /
    • v.4 no.4
    • /
    • pp.56-64
    • /
    • 2008
  • Anaerobic biodegradability (AB), which can be determined with the ultimate methane yield by the decomposition of organic materials, is one of the important parameters for the design and the operation of anaerobic digestion plant. In this study, Biochemical methane potential (BMP) test has been carried out to evaluate the methane yields of animal manures such as pig and cattle slurries, and different forage crops cultivated at the reclaimed tideland such as maize, sorghum, barley, rye, Italian ryegrass (IRG), rape, rush, and waste sludge produced from slaughterhouse wastewater treatment plant (SSWTP). In the ultimate methane yield and biodegradability of animal manure, those of pig slurry were 345 $mlCH_4/gVS_{fed}$ and 44.7% higher than 247 $mlCH_4/gVS_{fed}$ and 46.4% of cattle slurry (Cat. 2). The ultimate methane yield and biodegradability of spike-crop rye (Rye 1) were 442.36 $mlCH_4/gVS_{fed}$ and 86.5% the highest among different forage crops, those of the other forage crops ranged from 306.6 to 379 $mlCH_4/gVS_{fed}$ of methane yield with the AB having the range of about 60 to 77%. Therefore the forage crops could be used as a good substrate to increase the methane production and to improve the biodegradability in anaerobic co-digestion together with animal manure.

  • PDF

Heavy Metals Contents and Chemical Characteristics in Compost from Animal Manures (가축분 퇴비의 중금속 함량 및 화학적 형태별 특성)

  • Ko, Han Jong;Kim, Ki Youn
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.2
    • /
    • pp.170-177
    • /
    • 2016
  • Objectives: This study was conducted to evaluate the total heavy metals contents and chemical forms in the animal manure compost. Materials and methods: A total of 109 compost samples were collected throughout the country and classified into three groups in accordance with the raw materials; pig manure, poultry manure and mixed(pig+poultry+cattle) manure. The compost samples were analyzed for total metal content and sequential chemical extraction to estimate the quantities of metals. Results: Concentrations of Zn and Cu in several compost samples were higher than the maximum acceptable limits by the Korea Compost Quality Standards. Concentrations of Zn, Cu, and Cd in compost samples were 257~5,102, 68~1,243, and 0.02~2.54 mg/kg respectively, while Cr, Ni, As, and Pb were < 20 mg/kg. The concentrations of heavy metals in pig manure compost were higher than those of both the poultry and the mixed manure compost. The predominant forms for extracted metals were Cr, Ni, Zn, As, and Pb, residual; Cu, organic; and Cd, carbonate. Conclusions: Results indicate that the Zn and Cu contents in compost were higher than other heavy metals and the heavy metal contents were greater in pig manure compost followed by mixed and poultry manure compost. To prevent the accumulation of heavy metals in soil where animal manure compost is applied, strategy for reducing heavy metal concentrations in animal manure and compost must be considered.