• Title/Summary/Keyword: Animal manure compost

Search Result 128, Processing Time 0.033 seconds

The Effect of Temperature of Compost on the Germination Inhibition of Weed Seeds during Livestock Manure Composting (가축 분 퇴비화과정의 온도에 따른 잡초종자 발아억제 효과)

  • Jeong, Kwang-Hwa;Kim, Ki-Yong;Lee, Dong-Jun;Lee, Dong-Hyun;Kwag, Jung-Hoon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.38 no.4
    • /
    • pp.325-330
    • /
    • 2018
  • This study was carried out to assess the composting temperature effects on germination of curled dock and barnyard millet seeds. After the seeds wrapped in gauze were buried in the compost heap, the seeds were taken out under monitering the temperature for measuring germination rate at 1.5, 3, 10 and 20 days of composting. The germination rate of the seeds was directly related to the temperature of the compost heap regardless of the type of composting method. The seeds that buried in the compost for 1.5 days at a temperature of $60{\sim}70^{\circ}C$ were completely lost their germination ability. However, the germination rate of the seeds retained about 10% even after 20 days when compost temperature was below $51^{\circ}C$. Reulsting data suggests that, it is necessary to keep the compost temperature at least $55^{\circ}C$ for more than 3 days in order to suppress the germination of the seeds. On the other hand, if the temperature of the compost rises by $60{\sim}70^{\circ}C$, the seeds will lose their gemination ability with in 1.5 days. In conclusion, aerobic composting would be more effective in suppressing germination ability of curled dock seed and barnyard millet seeds.

Study on the Improvement of Soil for High Efficient and Sustainable Agriculture-I. Effect of Repeated Application of Chicken and Pig Manure Composts on Tomato Growth and Soil Physico-chemical Properties (지속적 농업을 위한 고성능 토양의 개발 연구-I. 계분 및 돈분퇴비의 연용이 방울토마토(Lycopersicum esculentum var. cerasiforme)의 생육 및 토양의 이화학성에 미치는 영향)

  • Cho, Sung-Hyun;Lee, In-Bog;Chang, Ki-Woon
    • Applied Biological Chemistry
    • /
    • v.41 no.6
    • /
    • pp.451-456
    • /
    • 1998
  • To find out the repeated application effect of chicken and pig manure composts on tomato growth and soil physico-chemical properties, different rates of the composts were applied to greenhouse soils with low fertility for 3 years and tomato was grown annually. As application rate of compost increased, the growth and fruit yield of tomato increased markedly, and there are also a little increase in sugar content in fruit juice and weight per fruit. When only compost was applied, however, physical and chemical properties in soil showed to be unbalanced such as significantly low bulk density and hardness, and high porosity as well as high organic matter and exchangeable K content, and low exchangeable Ca content than those of optimum range for soil diagnosis. Therefore mixed use of compost and chemical fertilizer is more promising way than the only use of compost to make suitable physico-chemical properties for tomato growth.

  • PDF

Prediction of Heavy Metal Content in Compost Using Near-infrared Reflectance Spectroscopy

  • Ko, H.J.;Choi, H.L.;Park, H.S.;Lee, H.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.12
    • /
    • pp.1736-1740
    • /
    • 2004
  • Since the application of relatively high levels of heavy metals in the compost poses a potential hazard to plants and animals, the content of heavy metals in the compost with animal manure is important to know if it is as a fertilizer. Measurement of heavy metals content in the compost by chemical methods usually requires numerous reagents, skilled labor and expensive analytical equipment. The objective of this study, therefore, was to explore the application of near-infrared reflectance spectroscopy (NIRS), a nondestructive, cost-effective and rapid method, for the prediction of heavy metals contents in compost. One hundred and seventy two diverse compost samples were collected from forty-seven compost facilities located along the Han river in Korea, and were analyzed for Cr, As, Cd, Cu, Zn and Pb levels using inductively coupled plasma spectrometry. The samples were scanned using a Foss NIRSystem Model 6500 scanning monochromator from 400 to 2,500 nm at 2 nm intervals. The modified partial least squares (MPLS), the partial least squares (PLS) and the principal component regression (PCR) analysis were applied to develop the most reliable calibration model, between the NIR spectral data and the sample sets for calibration. The best fit calibration model for measurement of heavy metals content in compost, MPLS, was used to validate calibration equations with a similar sample set (n=30). Coefficient of simple correlation (r) and standard error of prediction (SEP) were Cr (0.82, 3.13 ppm), As (0.71, 3.74 ppm), Cd (0.76, 0.26 ppm), Cu (0.88, 26.47 ppm), Zn (0.84, 52.84 ppm) and Pb (0.60, 2.85 ppm), respectively. This study showed that NIRS is a feasible analytical method for prediction of heavy metals contents in compost.

Composting Characteristics of Food Waste - Poultry Manure Mixture Inoculated with Effective Microorganisms (유용미생물처리 음식물쓰레기와 계분 혼합물 퇴비화 특성)

  • Hong, Ji-Hyung;Park, Keum-Joo
    • Journal of Animal Environmental Science
    • /
    • v.15 no.1
    • /
    • pp.59-68
    • /
    • 2009
  • This study investigated the evaluation of maturity, stability, nutrient and heavy metal from rotating drum composter of food waste amended with poultry manure composting inoculated with effective microorganisms(EM). Composting were performed for the first, drying reactor($15m^3$) 3 hours and the second, composting reactor($30m^3$) 24 hours, and parameters monitored this period included moisture content, NaCl, pH, electrical conductivity(EC), C/N ratio, organic matter(OM), nutrient content and heavy metal. Changes in compost temperature during composting were maintained constantly in the range of $60{\sim}80^{\circ}C$ using firewood boiler(450 MJ/h). We examined physicochemical parameters and heavy metals in order to assess their effectiveness as stability and maturity, nutrient and harmful indicators such as seed germination rate<60%, potassium 1>%, dm and NaCl>1%, dm at the end of the final compost. The finished compost obtained after decomposition phase at the end of the 2nd composter could not be utilized for land improvement or reclamation.

  • PDF

Effect of Tillage System and Fertilizer Type on the Forage Yield, Quality, and Production Cost of Winter Rye (경운방법 및 비료종류가 호밀의 사초수량, 품질 및 생산비에 미치는 영향)

  • 김종덕;김수곤;권찬호
    • Journal of Animal Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.115-122
    • /
    • 2006
  • This experiment was conducted to evaluate the effect of tillage system and fertilizer type on the forage yield, quality, and production cost of winter rye. This experiment was a 2×2 factorial arrangement for two tillage system (Tillage and No-tillage) and two fertilizer type (Chemical and Manure compost). There was no difference in dry matter (DM) content, TDN (total digestible nutrients) yield, and CP (crude protein) yield of rye, but the DM yield was significantly higher for rye in tillage compared to the no-tillage system. The use of chemical fertilizer type also showed significant increase in DM, TDN and CP yields compared to the use of manure compost as fertilizer. The CP content for rye was significantly higher in no-tillage compared to tillage system, but the type of fertilizer used has no significant effect. No significant effects were observed for NDF (neutral detergent fiber), ADF (acid detergent fiber), and TDN in tillage system and fertilizer type of rye. The total cost to prepare 1 ha is lower in no-tillage compared to tillage, but production cost in rye per kg of fresh, DM and TDN were almost the same as tillage system because of lower forage production. The total cost to prepare 1 ha with the use of chemical fertilizer was higher than using manure compost as fertilizer, however, the cost to produce 1 kg of fresh, DM and TDN were lower when using chemical as fertilizer because of higher yield. Based on the results of this study, tillage system and fertilizer type affected forage yield more than forage quality. Production cost per 1 kg of tillage was lower compared to no-tillage, and that of chemical was lower than manure because of higher forage yield.

Evaluation of Composting Characteristics According to the Air Supply Change in Farm-Sized Swine Manure (농가규모 양돈분뇨 퇴비화시 공기공급량 변화에 따른 퇴비 특성 평가)

  • Lee, Sunghyoun;Jeong, Gwanghwa;Lee, Dongjun;Lee, Donghyeon;Jang, Yuna;Kwag, Junghoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.3
    • /
    • pp.49-61
    • /
    • 2019
  • Swine manure has been recognized as a organic sources for composting and many research was conducted to efficiently utilize and treat. This study was to evaluate a feasibility for producing swine manure compost under various treatment with mixture of swine manure and saw dust. Treatments were designed as follows; non aerated composting pile(REF), aerated composting pile of $100L/m^3$(EXP1), and aerated composting pile of $150L/m^3$(EXP2). The total days of fermentation were 28 days and each samples were collected at every 7 days from starting of composting. Temperature sensors were installed under 30~40cm from the surface of composting pile. Inner temperature in composting piles of EXP1 and EXP2 was rapidly increased to $67{\sim}75^{\circ}C$ within 1~2 days. The elevated temperatures found during the thermophilic phase are essential for rapid degradation of organic materials. While swine manure composted, moisture content, total nitrogen, EC of EXP1, EXP2 in sample at 28 days were lower than those of REF. But, pH and organic matter of EXP1, EXP2 in sample at 28 days were higher than those of REF. After finishing fermentation experiment, maturity was evaluated with germination test. Calculated germination index(GI) at REF, EXP1 and EXP2 were 23.49, 68.50 and 51.81, respectively. The values of germination index were higher at EXP1 and EXP2 which is aerated composting piles than REF which is non aerated composting pile. According to the results, composting process by aerated static pile compost had significant effect on the reduction of required period for composting. Supplying adequate amount of air to compost swine manure will greatly reduce composting period.

Composting High Moisture Materials : Bio-Drying Livestock Manure in a Sequentially Fed Reactor

  • Lee, J.H.;Park, H.L.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.701-710
    • /
    • 1996
  • Composting has gained rapid acceptance as a method of recyling relatively dry organic materials such as leaves and brush and , when alternative disposal costs are high, even moist materials such as grass clippings and dewatered sewage sludges. However, as moisture contents rise above 60% , the need for a dry bulking amendment increase the costs of composting , both by direct purchases of amendment and though increased reactor capacity and materials handling requirements. High moisture materials also present increased risks of anaerobic odor formation through reduced oxygen transport (Miller , 1991) . These costs and operational challengers often constrain the opportunities to compost high moisture materials such as agricultural manures. During the last several decades economies of scale in livestock production have been increasing livestock densities and creating manure management challenges throughout the world. This issue is particularly pressing in Korea, where livestock arms typically manage little or no cropland, and the nutrients and boichemical oxygen demand in manure pose a serious threat to water quality. Composting has recently become popular as a means of recycling manure into products for sale off the farm, but bulking amendments (usually sawdust) are expensive designed to minimize bulking agent requirements by using the energy liberated by decompostion. In this context the composting reactor is used as a biological dryer, allowing the repeated use of bulking amendment with several batches of manure.

  • PDF

A Study on the Characteristics Using Pig Manure Under Aerobic Air Flow Rate During Composting (돈분이용 퇴비화과정에서의 공기공급량별 퇴비화 특성변화에 관한 연구)

  • Kwag, J.H.;Kim, J.H.;Jeong, K.H.;Cho, S.H.;Ahn, H.K.;Choi, D.Y.;Jeong, M.S.;Lee, S.C.;Kang, H.S.;Ra, C.S.
    • Journal of Animal Environmental Science
    • /
    • v.17 no.2
    • /
    • pp.131-138
    • /
    • 2011
  • This study was carried out to investigate on the composting characteristics variation accoding to air supply capacity in Pig manure. The composting of pig manure is economical and efficiently process. The fermented compost was added in pig manure mixed with sawdust was composting reators. Air supply capacity levels of fermented compost on the pig manure mixed with sawdust were regulated at 50, 100, 150 and 200$\ell/m^3$/min. respectively. The obtained results can be followed as bellow; The temperature variations of experimental composting piles during composting for the different of T-1 reach $40^{\circ}C$ in 2 days, T-2, T-3 and T-4 reach $60^{\circ}C$ in 2 days and T-3, T-4 maintained until 8 days. The decreases in water contents per each square meter for the different of T-1 (50 l/$m^3$/min), T-2(100 l/$m^3$/min), T-3(150 l/$m^3$/min) and T-4(200 l/$m^3$/min.), The decreases ratio in water contents was T-1, T-2, T-3 and T-4 were 15.4%, 28.8%, 33.4% and 35.2%. The decreases ratio in weight was T-1, T-2, T-3 and T-4 were 7.6%, 15.6%, 16.8% and 16.9% respectively. The variations of oxygen concentration from composting period in case of oxygen discharge concentration T-1, T-2, T-3 and T-4 were 9 ppm. respectively. Fertilizer components after composting were examined. Nitrogen contents of the T-1, T-2, T-3 and T-4 were 0.45%, 0.44%, 0.42% and 0.44%, and P2O5 contents were T-1, T-2, T-3 and T-4 were 0.37%, 0.41%, 0.42% and 0.44% respectively. Therefore, the compost curing air supply of air volumes at least 150$\ell$/min/min. or more to supply the aerobic composting pig manure normally are judged to be possible.

Effects of Microwave Radiation on the Moisture Content and Subsequent Aerobic Composting of Pig Manure (돼지분뇨에 마이크로파 반응시간에 따른 호기성 퇴비화 과정에서 수분증발량 및 특성변화에 관한 연구)

  • Kwag, Jung-Hoon;Jeong, Kwang-Hwa;Choi, Dong-Yoon;Kim, Jung-Gon;Han, Duk-Woo;Han, Man-Hee;Yoo, Young-Hee;La, Chang-Six
    • Journal of Animal Environmental Science
    • /
    • v.19 no.2
    • /
    • pp.109-116
    • /
    • 2013
  • In this experiment, we hypothesized that pre-conditioning pig manure with microwave radiation can effectively eliminate moisture and consequently, cut down a need for expensive sawdust. For the experiment, pig manure/sawdust mixture of water content 79% was divided into 4 groups and each of them were treated with microwave for predetermined time periods, 5, 10, 15, 20 minutes. Subsequently, they were transferred to chambers (20 L) and aerobically composted. During the 2 weeks composting, air was supplied using blower (150 L per $1m^3$) and temperature and other variables were monitored continuously. When the data were analyzed, it was found, (1) moisture content was significantly decreased as radiation period extended. (2) weight reduction of compost after completion of composting was noticeably bigger in 15 min radiated group(31%), compared with 5 min (24.6%), 10 min (21.4%), 20 min (27.2%) radiated groups.

Performance Characteristics of Matured Compost Biofiltration of Ammonia Gas from the Agitated Composting (교반식 퇴비화 암모니아가스의 부숙퇴비를 이용한 탈취성능 특성)

  • 홍지형;박금주
    • Journal of Animal Environmental Science
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • Real sized open type biofilter system was manufactured to control the odor generated from the agitated composting system which composted swine manure and sawdust mixtures. The aim of this research was to develop a biofilter system using matured compost and to evaluate the performance of the biofilter system. Average ammonia reduction rate through the biofilter was 84% during about two month period of composting. The maximum ammonia concentration after filtering was 45ppm lower than allowable value of 50ppm. It was concluded that compost can be used as a biofilter materials.

  • PDF