• Title/Summary/Keyword: Animal and vegetable oil

Search Result 127, Processing Time 0.022 seconds

Analysis of Major Phytosterol Contents for 10 Kind of Vegetable Oils (식물성 유지 10종에 대한 주요 Phytosterol 함량 분석)

  • Cho, Sang-Hun;Lee, Myung-Jin;Kim, Ki-Yu;Park, Geon-Yeong;Kang, Suk-Ho;Um, Kyoung-Suk;Kang, Hyo-Jeong;Park, Yong-Bae;Yoon, Mi-Hye
    • The Korean Journal of Food And Nutrition
    • /
    • v.34 no.2
    • /
    • pp.217-223
    • /
    • 2021
  • Vegetable oils are a rich source of bioactive substances. Phytosterols in those have been known for many years for their properties for reducing blood cholesterol levels, as well as their other beneficial health effects. Phytosterols are triterpenes that are important structural components of plant cell membranes just as cholesterol does in animal cell membranes. The aim of this study was to provide consumers with information about phytosterol contents in vegetable oils in Korea market. The contents of major phytosterols (campesterol, stigmasterol, β-sitosterol) in 50 vegetable oils of 10 kinds (perilla oil, peanut oil, avocado oil, olive oil, pine nut oil, sesame oil, canola oil, coconut oil, grape seed oil, and sunflower oil) were analyzed by gas chromatography with flame ionization detector. The average contents of vegetable oils containing 5 or more samples were in the order of sesame oil (334.43 mg/100 g), perilla oil (262.16 mg/100 g), grape seed oil (183.71 mg/100 g), and olive oil (68.68 mg/100 g). Phytosterol content of sesame oil and perilla oil was high among vegetable oils.

Development of Vegetable Alternative Materials for Mink Oil (밍크 오일의 식물성 대체원료 개발)

  • Seok-Ju Lee;Min-Tae Kim;So Min Lee;So Young Jung;Sofia Brito;Hyojin Heo;Byungsun Cha;Sang Hun Lee;Lei Lei;Ha Hyeon Jo;You-Yeon Chun;Ye Ji Kim;Mi-Gi Lee;Byeong-Mun Kwak;Bum-Ho Bin
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • This study focused on the development of a vegetable recombinated oil to mimic the animal-derived mink oil. Various vegetable oils and fatty acid substrates were mixed and an immobilized enzyme was utilized in the reaction to synthesize a plant-derived mink oil through deacidification and purification processes. The chemical composition and thermal properties of the recombined oil were confirmed using gas chromatography and differential scanning calorimetry. Our results show a high similarity between mink oil and our synthesized plant-derived mink oil, revealing the potential of utilizing vegetable alternatives for the substitution of animal raw materials, which have been gradually discontinued as cosmetic ingredients.

Effect of High Pressure after the Addition of Vegetable Oil on the Safety and Quality of Beef Loin (식물성 유지 첨가 후 초고압 처리가 우육의 안전성 및 육질에 미치는 영향)

  • Jung, Yeon-Kook;Jung, Samooel;Lee, Hyun-Jung;Kang, Min-Gu;Lee, Soo-Kee;Kim, Yun-Ji;Jo, Cheorun
    • Food Science of Animal Resources
    • /
    • v.32 no.1
    • /
    • pp.68-76
    • /
    • 2012
  • Olive oil and grape seed oil (10% of meat weight) were added to a package of beef loin. The package was then vacuum-sealed, and high pressure was applied (HP, 600 MPa) to investigate the effect of the penetration of vegetable oil into meat and safety and quality of the meat. Non-HP (0.1 MPa) without any oil treatment was considered as a control. The color $L^*$ and $b^*$-values of beef loin were higher and the $a^*$-value was lower than those of the control after HP at 600 MPa. The total aerobic bacterial number was 3 Log CFU/g in the control but no viable cell was detected in the beef with 600 MPa. All inoculated E. coli and L. monocytogenes were inactivated by HP. The beef loin with vegetable oil added without HP did not show any difference in fatty acid composition, but that treated by HP showed a higher oleic and linoleic acid content when olive oil and grape seed oil were added, respectively. The addition of olive oil inhibited lipid oxidation, and sensory evaluation revealed that there was no difference among treatments. The results indicate that the addition of vegetable oil followed by the application of HP enhances the safety of beef loin, changing the fatty acid composition in a health beneficial way. In addition, the use of olive oil can inhibit lipid oxidation induced by HP.

Rubber seed oil and flaxseed oil supplementation on serum fatty acid profile, oxidation stability of serum and milk, and immune function of dairy cows

  • Pi, Yu;Ma, Lu;Wang, Hongrong;Wang, Jiaqi;Xu, Jianchu;Bu, Dengpan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.9
    • /
    • pp.1363-1372
    • /
    • 2019
  • Objective: This study was designed to investigate the effect of diet supplementation with rubber seed oil and flaxseed oil on serum fatty acids profile, oxidation stability of serum and milk, and immune function of dairy cows. Methods: Forty-eight mid-lactation Holstein dairy cows were randomly assigned to one of four treatments for 8 wk, including basal diet (CON) or the basal diet supplemented with 4% rubber seed oil (RO), 4% flaxseed oil (FO) or 2% rubber seed oil plus 2% flaxseed oil (RFO) on a dry matter basis. Results: Compared with CON, all the oil groups increased the levels of trans-11 C18:1 (vaccenic acid), cis-9, trans-11 C18:2 (conjugated linoleic acid, CLA) and C18:3 (${\alpha}$-linolenic acid, ALA) in serum. Both the activity of glutathione peroxidase and catalase in serum and milk in oil groups were decreased, which were negatively correlated with the levels of cis-9, trans-11 CLA and ALA. The concentrations of proinflammatory factors (tumor necrosis factor ${\alpha}$ and interferon ${\gamma}$) in serum of oil groups were lower than that from the CON cows. Conclusion: These results indicate that diet supplementation with RO or FO could alter serum fatty acid profile and enhance the immune function of dairy cows. However, the negative effect on milk oxidation stability should be considered when feeding these n-3 polyunsaturated fatty acid-enriched oils in dairy production.

Biodiesel Production from Waste Cooking Oil Using Alkali Catalyst and Immobilized Enzyme 1. Fatty Acid Composition (알칼리 촉매와 고정화 효소를 이용한 폐식용유로 부터 바이오 디젤 생산 1. 지방산 조성)

  • Shin, Choon-Hwan
    • Journal of Environmental Science International
    • /
    • v.19 no.10
    • /
    • pp.1247-1256
    • /
    • 2010
  • Since biodiesel as bioenergy is defined as ester compounds formed by esterification of animal/vegetable oils, in this study three vegetable cooking oils (market, waste and refined waste ones) were esterified by reactions of alkali catalyst and immobilized enzyme. The fatty acid composition of the formed ester compounds was analyzed to investigate the feasibility of biodiesel production. By lipolysis (i.e, hydrolysis of Triglyceride (TG)), all three vegetable oils used in this study were found to produce Diglyceride (DG), Monoglyceride (MD) and Fatty acid ethylester (FAEE). However, the amount of produced FAEE (which can be used as an energy source) was in the increasing order of market cooking oil, waste one and refined waste one. With NaOH catalyst, FAEE was produced about 24.92, 17.63 and 11.31 % for the respective oils while adding Lipozyme TL produced FAEE about 43.54, 38.16 and 24.47 %, respectively. This indicates that enzyme catalyst is more effective than alkali one for transesterification. In addition, it was found that the composition of fatty acids produced by hydrolysis of TG was unchanged with alkali and immobilized enzyme reactions. Thus it can be expected that stable conditions remain in the course of mixing with gasoline whose composition is similar to that of the fatty acids.

Effect of dietary vegetable oil on the Growth and Blood Glucose Level of Rabbit (식물성유지(植物性油脂)가 토끼의 성장(成長)과 혈당(血糖)에 미치는 영향)

  • Nam, Hyun-Keun;Chung, Young-Tai
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.9 no.1
    • /
    • pp.39-44
    • /
    • 1980
  • The effect of dietary vegetable oils on the growth and blood glucose level of rabbit was examed. This study was carried out to observe the nutritive effect of feeding vegetable oils for a period of weeks. The experimental diets were prepared on the basis of isocaloric and isonitrogenous diet. The Experimental animals were fed on 5 kinds of diets such as control (Basal), group A(Basal + sesame oil), group B(Basal + perilla oil), group C(Basal + soybean oil), and group D(Basal + rice bran on diets for 4 weeks. The results obtained are summarized as follows: 1. The gain in body weight of rabbit was higher for perilla oil fed group than any other group gained. 2. Liver weight of the control group, group A, group B, group C, and group D were 30.35 or 37.35 or, 37.25 or, 38.25 gr, 31.05 gr, and 39.54 gr, respectively. The reletionship between liver and body weight were 3.25, 3.99, 4.33, 4,15, and 4.57, respectively. It showed that to liver weight of group D which was fed rice bran oil was heavier than any other group showed. 3. The content of total protein and glucase level in serum of animal blood were 5.72 mg% 40.34 mg%, 5.65 mg%: 22.37 mg%, 5.95 mg%: 77.0 mg%. 5.62 mg%: 28.60 mg%, and 5.63 mg%: 34.10 mg%, respectively. As shown above, the group B was the most heaviest one. 4. It may be concluded from the above results that linolenic acid which was included in vegetable oils have an effect on interconversion among three caloric elements such as cabohydrate, protein, and fats.

  • PDF

Relationship between Vitamin E and Polyunsaturated Fat - A comparative animal study emphasizing perilla seed oil as a fat constituent - (비타민 E와 불포화 지방과의 관계 - 들깨유(油)를 중심으로 한 동물의 비교 연구 -)

  • Leekim, Yang-Cha;Kwak, Tong-Kyung;Lee, Ki-Yull
    • Journal of Nutrition and Health
    • /
    • v.9 no.4
    • /
    • pp.19-27
    • /
    • 1976
  • Perilla (frutescens) seed oil, which is widely used as a source of vegetable oil in Korea, contains a strikingly large amount (58.4% of total fatty acids) of polyunsaturated linolenic acid (18 : 3) which is one of the essential fatty acids. Our hypothesis was that vitamin E contained in this oil would not be enough to prevent peroxidation of this polyunsaturated oil. A comparative study was carried out using rats and chicks devided into seven groups with various diet combinations emphasizing fat sources for the period of four weeks. The level of fat in each diet was 15% and animals were fed ad libitum. Various diet combinations were as follows; perilla seed oil and sesame seed oil with and without vitamin E supplementation, tallow as a saturated fat source and perilla seed hull group (10% at the expense of carbohydrate). The fat constituents of control group were consisted of 50% vegetable oil and 50% animal fat. A few important findings are as follows: 1. Rats fed perilla seed oil lost their hair focally around the neck and suffered from a bad skin lesion at the same place. In chicks, yellow pigmentation both of feather and of skin was clearly observed only in groups fed perilla seed oil with or without vitamin E supplementation. The basis of biochemical mechanisms of this phenomena remains as an important research interest. 2. The mean value for hematocrit was significantly lower for the chicks fed perilla seed oil than for those fed control diet. This result seems to be attributable to the effect on the red cell membrane known as peroxidation-hemolysis of vitamin E deficiency. 3. The serum cholesterol level was higher for the rats fed perilla seed oil than for those fed control diet, whereas in chicks the group fed perilla seed oil showed lower value than the control group indicating that different animal species could vary in their responses to the same diet. 4. In pathological examinations, the sign of hepatic fibrosis was seen in the perilla seed hull group and it was noticeable that the level of hepatic RNA was significantly increased in the rat recovering from vitamin E deficiency. It is hoped that more detailed studies on perilla seed oil and hulls will soon be carried out in many aspects especially i) at various levels of fat in the diet, ii) in relation to dietary selenium level and iii) to find an optimum level of dietary essential fatty acids in terms of P/S ratio using various animal species. In the mean time, the public should be informed to preserve this particular oil with care to minimize fatty acid oxidation and should be discouraged from overconsuming this oil. This study was supported by UB (United Board) Research Grant (Graduate School, Yonsei University, Seoul, Korea)

  • PDF

Biodiesel Production from Waste Oils Mixed with Animal Tallows and Vegetable Oil by Transesterification Using Ultrasonic Irradiation (초음파를 이용한 동식물성 혼합 폐유지로부터 바이오디젤 제조)

  • Chung, Kyong-Hwan;Park, Byung-Geon
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.487-492
    • /
    • 2013
  • Transesterifications of waste oils mixed with animal tallows and vegetable oil by ultrasonic energy were examined over various catalysts for biodiesel production. Reaction activities of the transesterification were evaluated to the ultrasonic energy and thermal energy. The physicochemical properties of feedstock and products were also investigated to the biodiesels produced from the oils in the reaction using ultrasonic energy. The highest fatty acid methyl ester (FAME) yield was obtained on the potassium hydroxide catalyst in the transesterification by ultrasonic irradiation. The effective reaction conditions by ultrasonic energy were 0.5 wt% catalyst loading and 6:1 molar ratio of methanol to the mixed oils. The reaction rate of the transesterification by ultrasonic energy was faster than that by thermal energy. The highest yields of FAME were obtained as 80% in 5 min and the reaction equilibrium reached at that time.

The effects of high-fat diets composed of different animal and vegetable fat sources on the health status and tissue lipid profiles of male Japanese quail (Coturnix coturnix japonica)

  • Donaldson, Janine;Madziva, Michael Taurai;Erlwanger, Kennedy Honey
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.5
    • /
    • pp.700-711
    • /
    • 2017
  • Objective: The current study aimed to investigate the impact of high-fat diets composed of different animal and vegetable fat sources on serum metabolic health markers in Japanese quail, as well as the overall lipid content and fatty acid profiles of the edible bird tissues following significantly increased dietary lipid supplementation. Methods: Fifty seven male quail were divided into six groups and fed either a standard diet or a diet enriched with one of five different fats (22% coconut oil, lard, palm oil, soybean oil, or sunflower oil) for 12 weeks. The birds were subjected to an oral glucose tolerance test following the feeding period, after which they were euthanized and blood, liver, breast, and thigh muscle samples collected. Total fat content and fatty acid profiles of the tissue samples, as well as serum uric acid, triglyceride, cholesterol, total protein, albumin, aspartate transaminase, and total bilirubin concentrations were assessed. Results: High-fat diet feeding had no significant effects on the glucose tolerance of the birds. Dietary fatty acid profiles of the added fats were reflected in the lipid profiles of both the liver and breast and thigh muscle tissues, indicating successful transfer of dietary fatty acids to the edible bird tissues. The significantly increased level of lipid inclusion in the diets of the quail used in the present study was unsuccessful in increasing the overall lipid content of the edible bird tissues. Serum metabolic health markers in birds on the high-fat diets were not significantly different from those observed in birds on the standard diet. Conclusion: Thus, despite the various high-fat diets modifying the fatty acid profile of the birds' tissues, unlike in most mammals, the birds maintained a normal health status following consumption of the various high-fat diets.

Effects of Added Vegetable Oils on In vitro Formation of Fatty Acid Soaps and Fermentation Characteristics and NDF Disappearance Rate (식물성유 첨가가 In vitro 발효성상, NDF 소실율 및 지방산염 형성에 미치는 영향)

  • Kim, D.I.;Choi, J.R.;Lee, Y.H.;Lee, J.K.;Chung, T.Y.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.355-372
    • /
    • 2004
  • In vitro experiments were conducted to determine the formation of fatty acid soaps (FAS) and neutral detergent fiber (NDF) disappearance rate. The substrates were a basal alfalfa hay containing 1) no oil, 2) 10% soybean oil, 3) 10% com oil, on a weight basis. All the substrates were incubated in triplicate for 0, 3, 6, 12, 24 and 48h in each experiment. After the incubation in the first experiment serum bottles (6oml) were analyzed for nonesterified, esterifed and fatty acid soaps contents. The serum bottles (120mI) from the second experiment were analyzed for pH, $NH_3-N$ and VFA concentration, and dry matter and NDF disappearance rate. pH decreased and the concentration of NH3-N increased significantly with longer incubation time (P<0.0001). The disappearance rates of dry matter and NDF significantly varied with feed, incubation time and oils (P<0.05). The molar concentration of total VFA increased and proportion of acetate significantly decreased with incubation time (P<0.0001), but the proportion of propionate significantly increased with longer incubation time (P<0.0001). Addition of oils to diet lowered the ratio of acetate:propionate (P<0.05). The esterified fatty acids (EFA) decreased with increasing incubation time (P<0.0001), and nonesterified fatty acids (NEFA) increased due to lipolysis of EFA, NEFA then reacted with cations to increase formation of FAS. The formation of FAS increased significantly at 48h of incubation time (P<0.0001). Especially, formation of stearic acid soaps was 27.5 and 32.5 folds with soybean oil and com oil supplements, respectively, by 48h of incubation time (P<0.0001). Alfalfa hay had higher cation contents, particularly Ca, which react with NEFA and FAS can be formed with longer incubation time. Saturated fatty acids had a higher proportion of FAS than did unsaturated fatty acids, suggesting that the former may react more extensively with cations. FAS contents increased with increasing chain length of the fatty acids. Since added vegetable oils fonned FAS, it might decrease negative effects on in vitro fermentation characteristics and NDF disappearance rate.