• 제목/요약/키워드: Anhydrides

검색결과 47건 처리시간 0.021초

유기산 무수물을 리간드로한 텅스텐 (VI) 착물에 관한 연구 (A Study on the Tungsten (VI) Complexes with the Organic Acid Anhydrides)

  • 오상오;김찬호
    • 대한화학회지
    • /
    • 제19권6호
    • /
    • pp.408-413
    • /
    • 1975
  • Oxygen doner인 무수유기산을 가진 dichloro-dioxo tungsen(VI) 착물의 합성방법을 연구하였다. RCOCl과$NaWO_4$를 반응시켜서 일반식 $WO_2Cl_2(RCO)_2O$로 표시할 수 있는 황색분말인 단핵착물을 합성하고 그 성질을 고찰하였다. 이 새로운 착물의 구조를 스펙트럼과 화학적인 방법에 의하여 측정하였다.

  • PDF

Properties of Biodegradable Films Produced from Rice Bran and Roasted Sesame Meal through Chemical Modifications

  • Bae, Dongho;Kim, Woo Jung;Jang, In Sook
    • Journal of Applied Biological Chemistry
    • /
    • 제43권2호
    • /
    • pp.79-85
    • /
    • 2000
  • Biodegradable films were prepared from roasted sesame meal and rice bran. Acetic anhydride, succinic anhydride, and formaldehyde were added to the film-forming solutions, and their effects on tensile strength, percent elongation, water vapor permeability, and water solubility of the films were studied. Roasted sesame meal did not form film without acylation or addition of formaldehyde. Acylated roasted sesame films had higher tensile strength and water-solubility, and lower % elongation than rice bran films. Acylation with acetic and succinic anhydrides increased tensile strength, percent elongation, and water solubility of rice bran films, but decreased water vapor permeability. Treatment with formaldehyde increased tensile strength of roasted sesame and rice bran films and % elongation of rice bran films, while reducing water-solubility of roasted sesame and rice bran films and water vapor permeability of rice bran films.

  • PDF

Synthesis and Characterization of HPMC Derivatives as Novel Duodenum-Specific Coating Agents

  • Huang Yuan;Zheng ling Ii;Liu Jun;Zhang Zhi rong
    • Archives of Pharmacal Research
    • /
    • 제28권3호
    • /
    • pp.364-369
    • /
    • 2005
  • HPMC (Hydroxypropyl methylcellulose) was chemically modified, using maleic anhydrides, to obtain pH-sensitive HPMCAM (Hydroxypropyl methylcellulose acetate maleate) polymers for use as novel duodenum-specific coating agents. The pharmaceutical properties of HPMCAM, such as film forming, acid values, pH-sensitive values, water vapor permeability, tensile strength and Tg, were investigated, and found to show good film forming properties. The pH­sensitive values were 3.0 to 3.7. In vitro results demonstrate that HPMCAM could completely suppress drug release within 2h in a simulated gastric fluid (pH 1.2) and rapidly release the drug in a simulated pathological duodenal fluid (pH 3.4). These results indicate that HPMCAM might be a useful material for a duodenum-specific drug delivery system.

Acyclic Anhydrides를 이용한 피리다진아민의 아실레이션; N-치환된 3-아미노-6-클로로피리다진 유도체의 합성 (Acylation of Pyridazinylamines by Acyclic Anhydrides; Synthesis of N-Substituted 3-Amino-6-chloropyridazines)

  • 박은희;박명숙
    • 약학회지
    • /
    • 제49권1호
    • /
    • pp.56-59
    • /
    • 2005
  • We synthesized new N-substituted 3-amino-6-chloropyridazine derivatives which were expected to retain biological activity. All synthetic process from pyridazine to 3-aminopyridazines could be carried out conveniently in high yield. N-Substituted 3-amino-6-chloropyridazine derivatives were prepared through amination and acylation from 3,6-dichloropyridazine. 3-Amino-6-chloropyridazine was prepared from the reaction of 3,6-dichloropyridazine with liquid ammonia under autoclave for 6 hrs. The refluxing of 3-amino-6-chloropyridazine and the corresponding acid anhydride for $1{\sim}2$ hrs afforded the N-substituted 3-amino-6-chloropyridazines. Alkyl chain of N-substituent was prolonged to six carbon (hexanoic acid).

Selective Reduction by Lithium Bis- or Tris(dialkylamino)aluminum Hydrides. Ⅶ. Reaction of Lithium Tris(dihexylamino)aluminum Hydride with Selected Organic Compounds Containing Representative Functional Groups$^1$

  • Cha, Jin-Soon;Kwon, Oh-Oun;Lee, Jae-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • 제14권6호
    • /
    • pp.743-749
    • /
    • 1993
  • The approximate rates and stoichiometry of the reaction of excess lithium tris(dihexylamino)aluminum hydride(LTDHA) with selected organic compounds containing representative functional groups under the standardized conditions (tetrahydrofuran, 0$^{\circ}$C) were studied in order to define the reducing characteristics of the reagent for selective reductions. The reducing ability of LTDHA was also compared with those of the parent lithium aluminum hydride(LAH), lithium tris(diethylamino)aluminum hydride(LTDEA), and lithium tris(dibutylamino)aluminum hydride(LTDBA). In general, the reactivity toward organic functionalities is in order of $LAH{\gg}LTDEA{\geq}LTDBA>LTDHA$. LTDHA shows a unique reducing characteristics. Thus, the reagent reduces aldehydes, ketones, esters, epoxides, and tertiary amides readily. Anthraquinone is cleanly reduced to 9,10-dihydro-9,10-anthracenediol without hydrogen evolution, whereas p-benzoquinone in inert to LTDHA. In addition to that, disulfides are also readily reduced to thiols without hydrogen evolution. However, carboxylic acids, anhydrides, nitriles, and primary amides are reduced slowly. Especially, this reagent reduces aromatic nitriles to the corresponding aldehydes in good yields.

Reaction of 2,2'-Biphenoxyborane in Tetrahydrofuran with Selected Organic Compounds Containing Representative Functional Groups

  • Cha, Jin-Soon;Kim, Jong-Mi;Lee, Ja-Cheol;Lee, Hyung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제12권6호
    • /
    • pp.612-617
    • /
    • 1991
  • The approximate rates and stoichiometry of the reaction of excess 1,3,2-biphenyldioxaborepin [2,2'-biphenoxyborane (BPB)] with selected organic compounds containing representative functional groups under the standardized conditions (tetrahydrofuran, hydride to compound being 4 : 1, room temperature) was examined in order to define the characteristics of the reagent for selective reductions and compare its reducing power with those of other substituted boranes. The results indicate that BPB is unique and the reducing power is much stronger than that of other dialkoxyboranes, such as catecholborane and di-s-butoxyborane. BPB reduces aldehydes, ketones, quinones, lactones, tertiary amides, and sulfoxides readily. Carboxylic acids, anhydrides, esters, and nitriles are also reduced slowly. However, the reactions of acid chlorides, epoxides, primary amides, nitro compounds, and disulfides with this reagent proceed only sluggishly.

Reaction of Di-s-butoxyborane in Tetrahydrofuran with Selected Organic Compounds containing Representative Functional Groups. Catalytic Effect of Tetraalkoxyborate on the Reaction of Dialkoxyborane$^\dag$

  • Cha, Jin-Soon;Lee, Jae-Cheol;Kim, Jin-Euog;Lee, Kwang-Woo;Yoon, Mal-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • 제8권4호
    • /
    • pp.304-310
    • /
    • 1987
  • The approximate rate and stoichiometry of the reaction of excess di-s-butoxyborane with selected organic compounds containing representative functional groups under standardized conditions (tetrahydrofuran, $25^{\circ}C)$ were examined in order to define the characteristics of the reagent for selective reductions. And the catalytic effect of lithium tetra-s-butoxyborate on the reaction of di-s-butoxyborane was also studied in order to increase the utility of this reducing system. Di-s-butoxyborane reacts only with simple aldehydes. However the addition of 2.5 mole % of lithium tetra-s-butoxyborate shows the tremendous rate enhancement of reaction for aldehydes, ketones, anhydrides, acid chlorides, lactones, and epoxides. This catalytic effect is assumed to in situ formation of lithium trialkoxyborohydride.

Characterization of Thermal Degradation of Polytrimethylene Terephthalate by MALDI-TOF Mass Spectrometry

  • Jang, Sung-Woo;Yang, Eun-Kyung;Jin, Sung-Il;Cho, Young-Dal;Choe, Eun-Kyung;Park, Chan-Ryang
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권3호
    • /
    • pp.833-838
    • /
    • 2012
  • The thermal degradation products of polytrimethylene terephthalate (PTT) obtained by heating the sample in the temperature range of $250-360^{\circ}C$ under non-oxidative conditions was characterized using MALDI-TOF (matrix assisted laser desorption/ionization) mass spectrometry. The structures of the degradation products were determined and the relative compositions were estimated. The MALDI-TOF mass spectra of the thermally degraded PTT sample showed three main series of oligomer products with different end groups, which were carboxyl/carboxyl, carboxyl/allyl, and allyl/allyl. In contrast to the thermal degradation of polyethylene terephthalate (PET), the oligomers containing terephthalic anhydrides were not detected, whereas the formation of oligomers containing the unsaturated allyl ester group was confirmed by mass assignment. From these results, it was concluded that the thermal degradation of PTT proceeds exclusively through the ${\beta}$-CH hydrogen transfer mechanism, which is in accordance with the proposed reaction mechanism for the thermal degradation of polybutylene terephthalate (PBT).

Enhanced Carbon Dioxide Adsorption on Post-Synthetically Modified Metal-Organic Frameworks

  • Ko, Na-Keun;Kim, Ja-Heon
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권8호
    • /
    • pp.2705-2710
    • /
    • 2011
  • Four MOFs functionalized with 1-Me, 1-Pr, 1-Ph, and 1-$PhCF_3$ were prepared through post-synthetic modifications of a metal-organic framework (MOF), UMCM-1-$NH_2$ (1) with acetic, butyric, benzoic, and 4-(trifluoromethyl)benzoic anhydrides, respectively. Methane adsorption measurements between 253 and 298 K at pressures up to 1 bar indicated that both 1-Ph and 1-$PhCF_3$ adsorbed more $CH_4$ than the parent MOF, 1. All the functionalized MOFs adsorbed more $CO_2$ than 1 under conditions similar to the $CH_4$ test. The introduction of functional groups promoted adsorption of both $CH_4$ and $CO_2$ despite significantly reducing Brunauer-Emmet-Teller (BET) surface area: 4170 (1), 3550 (1-Me), 2900 (1-Pr), 3680 (1-Ph), and 3520 $m^2/g$ (1-$PhCF_3$). Electron-withdrawing aromatic groups (1-Ph, 1-$PhCF_3$) more effectively enhanced $CO_2$ adsorption than electron-donating alkyl groups (1-Me, 1-Pr). In particular, 1-Ph adsorbed 23% more $CO_2$ at 298 K and 50% more at 253 K than 1.

Lpophilicity vs. Antitumor Activity of Carboxylatoplatinum(lV) Complexes

  • 송리타;김관묵;손윤수
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권10호
    • /
    • pp.951-952
    • /
    • 2000
  • Acylation of an intermediate tetrahydroxoplatinum(IV) complex, $[Pt(OH)_4(dach)]$ (dach = $trans-(\pm)-12-di-aminocyclohexane)$, with one or two kinds of carboxylic anhydrides in stepwise manner afforded various car-boxylatoplatinum(IV) complexes, $[Pt(O_2CR)\chi(OR’)4-\chi(dach)]$ (R = $(CH_2)_3CH_3$ or $C(CH_3)_3$, R’ = H or $OCCH_3$, and $\chi$ = 1-4) with a wide range of lipophilicity. The title complexes were subjected to bioassay using the murine leukemia L1210 cell line, and in particular, their in vivo oral antitumor activity was attempted to correlate with their lipophilicity and water solubility. The most orally active complex exhibited intermediate lipophilicity and water solubility, but it has been found that an exact relationship between the lipophilicity and oral anticancer activity could not be established, since the lipophilicity of the complexes is not the sole parameter to determine the oral activity. One of the important intermediate complexes partially substituted was subjected to X-ray anal-ysis for positit of the substituted group: $[Pt(OPiv)_3(OH)(dach)]$ crystallizes in the tetragonal sys-tem, space group $P42_1c$ with a = 21.161(3) $\AA$, b = 21.161(6) $\AA$, c = 12.816(3) $\AA$, $\alpha=\beta=$ r $=90^{\circ}$, V = 5739(2) $\AA^3$ and Z = 8.