Lipophilicity vs. Antitumor Activity of Carboxylatoplatinum(IV) Complexes

Rita Song, Kwan Mook Kim, and Youn Soo Sohn ${ }^{\circ}$
Inorganic Chemistry Lahoratory: Korea Institute of icience and Techoolos, 'ieoul 130-650, Korea Recemed May 25, 2000

Abstract

Acylation of an intermediate tetrahydroxoplatinum (IV) complex. $[\mathrm{Pt}(\mathrm{OH}) .($ dach $)]$ (dach $=$ trans- (\pm) - 1.2 -diaminocyclohexane), with one or two kinds of carboxylic anhydrides in stepwise manner afforded various carboxylatoplatinum(IV) complexes. $\left[\mathrm{Pt}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{x}\left(\mathrm{OR}^{\circ}\right)_{4}\right.$. $($ dach $\left.)\right]\left(\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}\right.$ or $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} . \mathrm{R}^{\cdot}=\mathrm{H}$ or OCCH_{3}. and $x=1-4$) with a wide range of lipophilicity. The title complexes were subjected to bioassay using the murine leukemia L1210 cell line. and in parlicular. their in who oral antitumor activity was attempted to correlate with their lipophilicity and water solubility. The most orally active complex exhibited intermediate lipophilicity and water solubility. but it has been found that an exact relationship between the lipophilicity and oral anticancer activity could not be established. since the lipophilicity of the complexes is not the sole parameter to determine the oral activity. One of the important intermediate complexes partially substituted was subjected to X-ray analysis for positional assignment of the substituted group: $\mathrm{P}(\mathrm{OPiv}) ;(\mathrm{OH})($ dach $)]$ crystallizes int the tetragonal sys1 cm . space group $P \overline{4} 2_{1} \mathrm{c}$ wilh $\mathrm{a}=21.161(3) \mathrm{A} \cdot \mathrm{b}=21.161(6) \mathrm{A} \cdot \mathrm{c}=12.816(3) \mathrm{A} . \alpha=\beta=\gamma=90^{\circ} . \mathrm{V}=5739(2)$ A^{3} and $Z=8$.

Introduction

The oral antitunor activity of platinum(IV) complexes is known to be dependent on the kinds of axial and equatorial ligands relevant to their reduction potential as well as on the balance of the lipophilicity and hydrophilicity of the complexes. In particular. lipophilicity is an important factor for bioavailability by oral administration. $1:=$ allhough the action mechanism of the $\mathrm{Pl}(\mathrm{lV})$ complexes has not been yel fully understood. ${ }^{3}$ The majority of platinum(IV) complexes have been synthesized by reacting carboxylic anhydrides or acyl chloride wilh hydroxo platinum(IV) complexes. For example. cis-trons-cis-(diamine) $\mathrm{P}(\mathrm{OH})_{2} \mathrm{X}_{2}(\mathrm{X}=$ halides or dicarboxylates). ${ }^{+-9}$ Recently we have reported a facile synthetic method and antitumor activity of lipophilic (diaminc)tetracarboxylatoplatinum(IV) complexes obtained by electrophilic substitution of (diaminc)tetrahydroxoplatinum(IV) complexes with carboxylic anhydrides. ${ }^{1 i 111}$ Above-mentioned studies suggested that the complexes with appropriate 1-octanol/water partition cocllicient cxhibited good antitumor activity. In order to examine the relationship between the lipophilicity and oral antitumor activity of $\mathrm{Pl}(\mathrm{IV})$ complexes. we have prepared $\mathrm{Pl}(\mathrm{IV})$ complexes of mixed carboxylates showing a wide range of lipophilicity. In the present study. the carricr amine ligand was fixed to fronss(\pm)-1.2-diaminocyclohevanc (dach). which is known to afford nearly no cross-resistancc. ${ }^{12,13}$ and the lipophilicity of Pt(IV) complexes was modulated by appropriate combination of different carboxylate ligands.

Experimental Section

Materials and instrumentation. Potassium tetrachloroplatinate(II) from Kojima. and pivalic anhydride ($\left.(\mathrm{Piv})_{2} \mathrm{O}\right)$. valeric anhydride ((Val) $)_{2} \mathrm{O}$). acetic anhydride ($\mathrm{Ac}_{2} \mathrm{O}$) and trans-(\pm)-I.2-diaminocyclohexane (dach) from Aldrich were
used as received. The starting material. (dach) $\mathrm{Pt}(\mathrm{OH})_{4}$ was prepared by the literature method. ${ }^{+}$For analytical HPLC. samples were chromatographed on Capcell PAK C_{18} using aqueous acetonitrile solutions as eluent. Elemental analyses were carricd out at the Advanced Chemical Analysis Center. KIST. 'H NMR spectra were recorded on a $300 \mathrm{MH} /$ Varian Gemini NMR spectrometer. IR spectra were measured as KBr pellets on a MIDAC 101025 FT-IR spectrometer. The mass analyses were performed by HP5989A equipped with HP59987A as an elcetron-spray source. A mixture of methanol and water ($80: 20$) containing 1% formic acid was used as solyent for the mass analysis. Water solubility of the complexes was measured by the literature method.?

Synthesis of $\left[\mathrm{Pt}(\mathbf{O P i y})_{3}(\mathbf{O H})(\right.$ dach $\left.)\right]$ (1). To a suspension of (dach) $\mathrm{Pt}(\mathrm{OH})_{4}(0.379 \mathrm{~g} .1 \mathrm{mmol})$ in acctone $(10 \mathrm{~mL})$ was added pivalic anhydride ($60 \% \mu \mathrm{~L} .3 \mathrm{mmol}$) and the reaction mixture was stirred for 6 h under protection from light. The solution mixture was craporated to dryness under reduced pressure. The solid product was cluted through a silica gel column using a mixed solvent of acetone/hexane (70/30. y/ ϑ). and the product was recosered with methanol. Yicld. 35%. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{4-2} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Pt} \cdot \mathrm{H}_{2} \mathrm{O}$. C. 40.I: H. 6.68 : N. 4.45. Found: C. 39.I: H. 6.68: N. 4.31. IR ($\mathrm{KBr} . \mathrm{cm}^{-1}$): $v_{\text {max. }}$ 1635. 1364. 1311. 1270. 1204. 598. ${ }^{1} \mathrm{H}$ NMR (acctonc$\mathrm{d}_{6 .} \mathrm{ppm}$): $\delta 2.85$ (br. NCH. 2H). 2.58 (br. 2H. CH2). 1.65 (br. $2 \mathrm{H} . \mathrm{CH}_{2}$). 1.35 (br. $2 \mathrm{H} . \mathrm{CH}_{2}$). 1.21 (br. $2 \mathrm{H} . \mathrm{CH}_{2}$). 1.18 (s. $\left.9 \mathrm{H} . \mathrm{CH}_{3}\right) .1 .14\left(\mathrm{~s} .9 \mathrm{H} . \mathrm{O}_{2} \mathrm{CC}\left(\mathrm{CH}_{3}\right)_{3}\right)$.

Synthesis of $\left[\mathrm{Pt}(\mathrm{OVal})_{3}(\mathrm{OH})(\right.$ dach $\left.)\right]$ (2). The procedure was the same as described for 1 except that valeric anhydride ($593 \mu \mathrm{~L} .3 \mathrm{mmol}$) instead of pivalic anhydride was used. Yield: 35%. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Pt} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}$. 40.I: H. 6.68: N. 4.45. Found: C. 39.8: H. 6.53: N. 4.39. IR (KBr. cm^{-1}): $v_{\text {max. }}$ 1624. 1372. 1278. $588 .{ }^{1} \mathrm{H}$ NMR (acc-tonc-d ${ }_{6 .}$ ppm): $\delta 2.85$ (br. $2 \mathrm{H} . \mathrm{NCH}$). 2.45 (br. $2 \mathrm{H} . \mathrm{CH}_{2}$), 2.21-2.35 (m. $6 \mathrm{H} . \mathrm{O}_{2} \mathrm{CCH}_{2}$). $1.50-1.70\left(\mathrm{~m} .10 \mathrm{H} . \mathrm{CH}_{2}\right) .1 .28-$ 1.45 (m. 8H. CH2). $0.92-0.98$ (m. 9H. CH_{3}).

Synthesis of $\left[\mathrm{Pt}(\mathrm{OPiv})(\mathrm{OAc})_{3}(\right.$ (tiakh $\left.)\right](3),\left[\mathrm{Pt}\left(\mathrm{OPiv}_{2}\left(\mathrm{OAc}_{2_{2}}\right.\right.\right.$ (dach)] (4), $\left[\mathrm{Pt}\left(\mathrm{OPiv}_{3}(\mathrm{OAc})(\mathrm{dach})\right](5)\right.$, and $\left[\mathrm{Pt}\left(\mathrm{OPiv}_{4}-\right.\right.$ (dach)](6). These complexes were prepared according to our previous method. ${ }^{14}$

Synthesis of $\left[\mathrm{Pt}(\mathrm{OVal})(\mathrm{OAc})_{3}(\mathrm{dach})\right]$ (7). To a suspension of (dach $) \mathrm{Pl}(\mathrm{OH})_{+}(0.379 \mathrm{~g} .1 \mathrm{mmol})$ in acetonc was added valeric anhydride ($198 \mu \mathrm{~L} .1 \mathrm{mmol}$) and the reaction mixture was stirred for 1 day under protection from light. Acetic anhydride ($330 \mu \mathrm{~L} .3 \mathrm{mmol}$) was added to the reaction mixture. which was further stirred for 1 day. The solution mixture was evaporated to dryness under reduced pressure. The solid product was eluted through a silica gel column using a mixed solvent of acctone/hexane ($35 / 75$ to $70 / 30 . v / v)$. The produce was oblained as a misture of two stercoisomers. Yield: 25%. Anal. Caled for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Pt}$. $4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C} .40 .0$. H. 6.07: N. 4.25. Found C. 41.0: H. 6.37: N. 4.12. IR (KBr. cm^{-1}): $v_{\text {nlax. }} 2954$. 1654. 1627. 1300. 1212 . ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}. ppm): $\delta 2.90$ (br. $2 \mathrm{H}, \mathrm{CH}_{2}$). 2.49 (br. $2 \mathrm{H}, \mathrm{CH}_{2}$). 2.21-2.47 (m. $2 \mathrm{H}_{.} \mathrm{O}_{2} \mathrm{CCH}_{2}$). 1.93-2.00 (s. $\left.9 \mathrm{H} . \mathrm{O}_{2} \mathrm{CCH}_{3}\right) .1 .69$ (br. $2 \mathrm{H}_{\mathrm{L}} \mathrm{CH}_{2}$). 1.45-1.62 (m.4H. CH_{2}) 1.29-1.43 (m. 4H. CH_{2}). $0.92-0.98\left(\mathrm{~m} .3 \mathrm{H} . \mathrm{CH}_{3}\right)$.
Synthesis of $\left[\mathrm{Pt}(\mathrm{OVal})_{2}(\mathrm{OAc})_{2}\right.$ (dach)] (8). This compound was synthesized using the corresponding mole ratio of valeric and acetic anhydrides by the same procedure for 7. The product was obtained as a mixture of three stercoisomers. Yield: 15%. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Pl} \cdot 4 \mathrm{H}_{2} \mathrm{O}$: C. 34.2: H. 6.56: N. 3.99. Found: C. 35.1: H. 6.49: N. 4.22. IR ($\mathrm{KBr} . \mathrm{cm}^{-1}$): $v_{\text {mas. }}$ 2954. 1654. 1632. 1300. 1212. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}. ppm): $\delta 2.90$ (br. $2 \mathrm{H}, \mathrm{CH}_{2}$). 2.51 (br. $2 \mathrm{H}, \mathrm{CH}_{2}$). 2.212.46 (m. $4 \mathrm{H} . \mathrm{O}_{2} \mathrm{CCH}_{2}$). 1.92-2.00 ($\mathrm{s} .6 \mathrm{H}, \mathrm{O}_{2} \mathrm{CCH}_{3}$). 1.71 (br. $\left.2 \mathrm{H} . \mathrm{CH}_{2}\right) .1 .45-1.62\left(\mathrm{~m} .6 \mathrm{H} . \mathrm{CH}_{2}\right) 1.30-1.43\left(\mathrm{~m} .6 \mathrm{H} . \mathrm{CH}_{2}\right)$. 0.92-0.98 (m. 6H. CH_{3}).

Synthesis of $[\mathrm{Pt}(\mathrm{OVal}) \mathbf{3}(\mathrm{OAc})(\mathrm{dach})]$ (9). This compound was synthesized using the corresponding mole ratio of valeric and acelic anhydrides by the same procedure for 7. The product was obtained as a mixture of two stercoisomers. Yield: 28%. Anal, Calcd for $\mathrm{C}_{23} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Pt} \cdot \mathrm{H}_{2} \mathrm{O}$; C. 40.0 : H. 6.68 : N. 4.06. Found C. 39.6: H. 6.87: N. 3.93. IR (KBr. cm^{-1}): $\boldsymbol{v}_{\text {max. }} 2924.1658 .1630 .1300 .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3} . \mathrm{ppm}\right)$: $\delta 2.90$ (br. $2 \mathrm{H} . \mathrm{CH}_{2}$). 2.51 (br. $2 \mathrm{H} . \mathrm{CH}_{2}$). 2.21-2.46 (m. 6 H . $\mathrm{O}_{2} \mathrm{CCH}_{2}$). 1.92-2.00 (s. $3 \mathrm{H}, \mathrm{O}_{2} \mathrm{CCH}_{3}$). 1.71 (br. $2 \mathrm{H} . \mathrm{CH}_{2}$). 1.45-1. $62\left(\mathrm{~m} .8 \mathrm{H} . \mathrm{CH}_{2}\right) 1.30-1.43\left(\mathrm{~m} .8 \mathrm{H} . \mathrm{CH}_{2}\right) .0 .92-0.98$ (m. 9H. CH3).

Bioassay. The antitumor activity of the compounds was assayed in witro and in who at the Korca Rescarch Institute of Chemical Technology (KRICT).
In vitro assay: These tests were carricd out using the ascites cell form of L1210 lymphoid leukemia. which was oblained from DBA/2 donor mice bearing 3-5 day tumor growth. L1210 leukemia cells were maintained in RPMI 1640 medium supplemented with 10% fatal bovine serum (GIBCO). Cells were adjusted to 1×10^{6} cells $/ \mathrm{mL}$ and distributed to 24 well tissue culture plates ($0.5 \mathrm{~mL} / \mathrm{well}$). Following 48 hrs incubation in a $5 \% \mathrm{CO}_{2}$ atmosphere at $37^{\circ} \mathrm{C}$. cell counts were determined with a Coulter Model ZM cell counter. Cell growth in the presence of test compounds was expressed as a percentage of growth in untreated control
wells and the concentration of compound producing 50% inhibition of cell growth was determined ($E D_{50}$).

In wivo assay: These tests were carricd out using the ascites cell form of L1210 lymphoid leukemia. which was obtaincd from DBA/2 donor mice bearing 3-5 day tumor growth. L1210 leukemia cells (10^{6}) were inoculated i.p. in BDF mice ($6-8$ wecks old. $20-25 \mathrm{~g} .8$ mices per group). and 24 hrs later. compounds were administered orally once a day for 5 consecutive days at a dose of $150 \mathrm{mg} / \mathrm{kg}$ per administration. Mortality was recorded and mean survival time was calculated for each group. In vivo activity of the title complexes was expressed as a survival elfect (T/C \% valuc). where T is the mean survival time of the drug treated mice and C is that of control mice.

X-ray structure determination. All the X-ray data were collected on an Enraf-Nonius CAD4 automated diffractometer equipped with a Mo X-ray tube and a graphite crystal monochromator. The orientation matrix and unit cell dimensions were determined from 25 machine centered reflections in the 2θ range of 15 to 25°. The variation of intensities was monitored by repeated check of intensities of three reflections cuery l h during the data collection period. Absorption corrections were applied by empirical psi scan on 3 reflection planes with a chi value of near 90°. A direct or Patterson method (SHELXS-97) ${ }^{15}$ was employed to locate the platinum atom. Subsequent cycles of Fouricr map and least square relinements located other atoms (SHELXL-93). ${ }^{16}$ All the nonhydrogen atoms were relined anisotropically. Hydrogen atoms were included in the structure factor calculation using a riding model. All the calculations were carried out using VAX and PC computers.

Results and Discussion

Synthesis and characterization. Acylation of tetrahydroxoplatinum(IV) complex. $\left[\mathrm{Pl}(\mathrm{OH})_{4}(\mathrm{dach})\right]$. with one or two kinds of carboxylic anhydrides in stepwise manner afforded various carboxylatoplatinum(IV) complexes. [$\mathrm{P}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{1}$ -$\left(\mathrm{OR}^{\circ}\right)_{4-x}($ dach $\left.)\right] \quad\left(\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}\right.$ or $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} . \mathrm{R}^{\prime}=\mathrm{H}$ or OCCH_{3}. and $x=(-4)$. Each compound was separated by silica gel column chromatography and oblained as a mixture of stercoisomers. Even when $\left[\mathrm{Pt}(\mathrm{OH})_{4}(\right.$ dach $\left.)\right]$ was reacted with equivalent pivalic or valcric anhydride only: various partially carboxylated products such as $\left[\mathrm{Pt}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{3}(\mathrm{OH})(\right.$ dach $\left.)\right]$. $[\mathrm{Pt}-$ $\left(\mathrm{O}_{2} \mathrm{CR}\right)_{2}(\mathrm{OH})_{2}($ dach $\left.)\right]$ and $\left[\mathrm{Pl}\left(\mathrm{O}_{2} \mathrm{CR}\right)(\mathrm{OH})_{3}(\right.$ dach $\left.)\right]$ were formed along with the fully carboxylated $\left[\mathrm{Pt}\left(\mathrm{O}_{2} \mathrm{CR}\right)+(\mathrm{dach})\right]$. Among these products $\left[\mathrm{Pt}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{4}(\mathrm{dach})\right]$ and $\left[\mathrm{Pt}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{3}-\right.$ $(\mathrm{OH})($ dach $)$] could be purcly isolated by two successive clutions from silica gel column (acetone/hexanc. $70 / 30 . \mathrm{v} / \mathrm{y} \%$ and methanol). The tricarboxylated product. [$\mathrm{Pt}\left(\mathrm{OPi}_{\mathrm{O}}\right)_{3}-$ $(\mathrm{OH})($ dach $)]$. obtained from the second fraction. was recrystallized and subjected to X-ray crystallography. These trisubstituted complexes may be used as a new precursor for other mixed carboxylatoplatinum(IV) complexes by reacting with another sccond carboxylic anhydride. For cxample. further reaction of the tris(pivalato)platinum(IV) complex with acetic anhydride afforded $\left[\mathrm{Pt}(\mathrm{OPiv})_{3}(\mathrm{OAc})(\mathrm{dach})\right]$ in quanti-

Table 1. Physico-chemical properties of Pt(lV) complexes and their mititumor activity agaimst murine leukemia L1210

		in vivo T/C (\%)	$\begin{gathered} \mathrm{HPIC} \\ T_{R} \\ (\mathrm{~min}) \end{gathered}$	solubility ($\mathrm{mg} / \mathrm{mL}$)
$1\left[\mathrm{Pt}(\mathrm{OPiv})_{i}(\mathrm{OH})(\mathrm{dach})\right]$	5.9	101	17.5	0.73
$2[\mathrm{Pt}(\mathrm{OVal}):(\mathrm{OH})($ dach $)]$	1.1	113	15.6	3.31
$3[\mathrm{Pt}(\mathrm{OPiv})(\mathrm{OAc})$ (dach $)]$	8.6	108	6.9	17.3
$4\left[\mathrm{Pt}(\mathrm{OPiv})_{2}(\mathrm{OAc})_{2}(\mathrm{dach})\right]$	1.3	137	13.2	3.24
$5\left[\mathrm{Pt}(\mathrm{OPiv}) \mathrm{i}_{(\mathrm{OAc})(\mathrm{dach})]}\right.$	1.5	125	21.5	1.01
$6\left[\mathrm{Pt}(\mathrm{OPiv})_{4}(\mathrm{dach})\right]$	>40	101	28.9	0.12
$7[\mathrm{Pl}(\mathrm{O} \mathrm{Val})(\mathrm{OAc})$ (dach $]$	5.0	125	7.5	15.5
$8\left[(\mathrm{Pl}(\mathrm{O} \mathrm{Val}) \mathrm{E} \text { (} \mathrm{OAc})_{5}(\mathrm{dach})\right]$	4.2	95	13.3	11.6
$9\left[\mathrm{P}^{\prime}(\mathrm{O} \mathrm{Val})\right.$: (OAc) (lachi]	8.6	95	18.5	0.97
$\left[\mathrm{Pl}(\mathrm{OAc})_{+}(\text {duch })\right]^{11}$	25.8	100	3.1	20.7
$[\mathrm{Pl}(\mathrm{OV} \mathrm{Val})$, (duch $)]^{11}$	6.2	1owic	23.8	0.43
JM216 ${ }^{\text {1 }}$	1.2	160	11.0	0.51

tative yield. In its ${ }^{1} \mathrm{H}$ NMR spectrum. the resonance of the methyl protons of the axial pivalate group appeared in more upficld region by 0.08 ppm compared with those of the equatorial ones. The mobility of the complexes in the HPLC column was monitored at 210 mm and their retention times are listed in Table 1. The lipophilicity of the complexes is generally known to be approximately proportional to their retention time. ${ }^{17}$ Tetrakis(acctato)platinum(IV) complex is the most hydrophilic and cluted at first of all ($T_{R}=3.2 \mathrm{~min}$). and tetrakis(pivalato)platinum(IV) complex was the most lipophilic ($T_{R}=28 \mathrm{~min}$). 1 l is seen in the table that the lipophilicity of the complexes increases with increasing number of the pivalate or valerate group substituted. Such characteristies seem to be related to their anticancer activity. which will be discussed later. In the IR spectra of (dach)P(IV) complexes of mixed carboxylates showed two distinguished asymmetric carboxylate stretching bands at 1658 and 1622 cm^{-1} in the case of $3-5$. and at 1654 and $1626 \mathrm{~cm}^{-1}$ in the casc of $7-9$. respectively. The partially acylated complexes 1 and 2 showed a characteristic $\mathrm{Pl}-\mathrm{O}$ stretching band in the region $588-598 \mathrm{~cm}^{-1}$ in addition to the asymmetric carboxylate stretching bands.
Crystal structure of $\left[\mathrm{Pt}(\mathbf{O P i v})_{3}(\mathbf{O H})\right.$ (dach)]. An ORTEP drawing of the complex is shown in Figure 1. The crystallographic data and selected bond lengths and angles are listed in Table 2 and Table 3. respectively. The ierminal methyl groups of the pivalate ligand are crystallographically disordered. Four oxygen atoms in the crystal structure around the platinum(IV) atom are positioned in a distorted octahcdral gcometry. in which the hydroxo ligand occupics the axial position. The distances of $\mathrm{P}-\mathrm{N}(1)$ and $\mathrm{Pt}-\mathrm{N}(2)$ bonds are $2.04(2)$ and $1.989(19)$ A. respectively. which fall in the range of the normal $\mathrm{Pt}-\mathrm{N}$ bond. ${ }^{18.19}$ The distances of $\mathrm{Pt}-\mathrm{O}(1)$ (2.007(17) A) and P1-O(3) (2.026(18) A) arc slighty longer than axial oncs ($1.968(13)$ A and $2.00(2)$ A). being consistent with the case of tetracarboxylatoplatimum(IV) complexes in the litcrature. ${ }^{8.14}$ In addition. these P1-O bond lengths (2.007(17). 2.026(18) and 2.00(2) A) between the platinum atom and the carboxylate oxygens are slightly longer than

 atomic labeling scheme.

Table 2. Crystallographic data for $\left[\mathrm{Pt}(\mathrm{OPiv})_{3}(\mathrm{OH})(\right.$ dach $\left.)\right]$

empirical formula	$\mathrm{C}_{21} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{-} \mathrm{Pt}$
formula weight	629.65
lemperature	293(2) K
wavelength	0.71073 A
crystal system, space group	tetragoral, $P \bar{\dagger} 2_{1} \mathrm{C}$
unil cell dimensions	$a=21.161(3) \AA, \alpha=90^{\prime} .$
	$\mathrm{b}=21.161(6) \hat{A}, \beta=90^{\circ} .$
	$\mathrm{c}=12.816(3) \hat{A}, \gamma=900^{\circ}$.
V	$5739(2) \lambda^{3}$
7. calculated density	$8.1 .448 \mathrm{~g} / \mathrm{cm}^{3}$
absorption coefficient	$4.925 \mathrm{~mm}^{1}$
$\mathrm{F}(000)$	2496
θ range for data collection	1.36 to 24.95°.
reflections collected/unique	$3047 / 1849[R($ int $)=0.1836]$
relinnement method	P'ull-matrix least-squares on F^{2}
data/restraints/parameters	1849/6/280
goodness-ol-tit on l^{12}	1.031
linal R indices $[I: 2 \sigma(I)]$	$R_{1}=0.06 .39, w R_{2}=0.1043$
R indices (all data)	$R_{1}=0.0703, w R_{2}=0.1087$
largest dilir paak and hole	1.433 and -1.589 e. A^{-1}

Table 3. Selected bond lenoths $[\lambda]$ and angles $\left\lceil^{\circ}\right\rceil$ tor $\left[\mathrm{Pt}(\mathrm{OPiv})_{\mathrm{h}}\right.$ (OH) (dach)] ${ }^{0}$

Distances			
$\mathrm{Pt}(1)-\mathrm{O}(7)$	$1.968(13)$	$\mathrm{Pt}(1)-\mathrm{N}(2)$	1.989(19)
$\mathrm{Pt}(1)-\mathrm{O}(\mathrm{S})$	$2.0092)$	$\mathrm{Pt}(1)-\mathrm{O}(1)$	$2.007(17)$
$\mathrm{Pt}(1) \mathrm{O}(3)$	$2.026(18)$	$\mathrm{Pt}(1)-\mathrm{N}(1)$	2.04(2)
Angles			
O(7)-Pl(1)-N(2)	87.6(7)	O(7)-Pt(1)-O(5)	169.4 (10)
$\mathrm{O}(7) \mathrm{PI}(1) \mathrm{O}(1)$	$97.8(7)$	$\mathrm{N}(2)-\mathrm{Pt}(1) \mathrm{O}(1)$	$174.6(7)$
$\mathrm{O}(7) \mathrm{PI}(1)-\mathrm{O}(3)$	89.9 (7)	$\mathrm{O}(1) \mathrm{Pt}(1)-\mathrm{N}(1)$	$95.9(7)$
$\mathrm{O}(1)-\mathrm{Pt}(1)-\mathrm{O}(3)$	$84.4(8)$	O(7)-Pte (1)-N(1)	89.4 (7)
$\mathrm{N}(2)-\mathrm{Pt}(1)-\mathrm{N}(1)$	84.4 (7)	O(5)-Pte (1)-N(1)	99.099
Ifydrogen bonds			
$\mathrm{N}(2)-\mathrm{O}(4)$	2.68	$\mathrm{N}(1) \mathrm{O}(6)$	2.68
$\mathrm{O}(7) \mathrm{O}(2)$	2.85	$\mathrm{N}(1) \mathrm{O}(7)^{+1}$	2.75
$\mathrm{N}(2)-\mathrm{O}(2)^{2}$	2.87		

Symmetry transtonmations used to generate cquivalent atoms: (i.1) 1-v, x. 1-7: (2 2) : 1-x, 1-7.

Figure 2. Molecular packing diagram of $[\mathrm{Pt}(\mathrm{OPiv})(\mathrm{OH})($ dach $)]$.
the $\mathrm{Pl}-\mathrm{OH}$ bond ($1.968(13) \mathrm{A}$). Nitrogen atoms of dach and the oxygen atom of the hydroxo ligand are involyed in intramolecular hydrogen bonding with three pivalate oxygens $((\mathrm{NH}(1)--\mathrm{O}(6)(2.668 \mathrm{~A}) . \mathrm{NH}(2)--\mathrm{O}(4)(2.676 \mathrm{~A}) . \mathrm{OH}(7)--$ $-O(2)(2.848 \mathrm{~A})$). The oxygen atom of the axial hydrovo ligand (O7) involved in the bydrogen bonding makes a dilference from other tetracarboxylatoplatinum(IV) complexes which have no free hydrovo ligand. These hydrogen bondings may be responsible for the distortion of the coordination angle of $\mathrm{O}(1)-\mathrm{Pt}-\mathrm{O}(3)(84.4(8))$. The packing diagram of the complex is shown in Figure 2. in which tert-butyl groups of the complex are omitted for clarity. Two nitrogen atoms of dach interact with oxygen atoms of neighboring molecules through hydrogen bonding $\mathrm{N}(1)--\mathrm{OH}(7)^{=1}(2.752 \mathrm{~A})$ and $\mathrm{NH}(2) \cdots(2)^{\prime 2}(2.872 \mathrm{~A})$. In the solid state. the molecules
 1-x. $1-\%$) showed a tetrameric interaction disposed like as a millwind through internolecular hydrogen bonding. Intermolecular hydrogen bonding interactions are shown by dotted lines in the figure.

Antitumor Activity. The in vitro cytotoxicity and in wiwo oral antitumor activitiy of the title complexes were assayed against the murine leukemia L 1210 cell line and the results are listed in Table 1. Dosage and schedule for oral administration were $150 \mathrm{mg} / \mathrm{kg}$ and five consceutive daily treatments ($\mathrm{Q} \mid \mathrm{D} \times 5$). The antitumor activity of the present complexes was compared with that of JM216. which has undergone extensive clinical studies. ${ }^{-i t-21}$ In vito activity of some complexes (1.I. 1.3 and $1.5 \mathrm{mg} / \mathrm{mL}$ for the complexes 2. 4. and 5, respectively) was almost the same as that of JM216 ($1.2 \mathrm{mg} / \mathrm{mL}$). but their in vio activity was inferior to that of JM216. However. among the present complexes. compound 4 with an intemediate lipophilicity ($T_{R}=13.2$) and moderate water solubility ($3.24 \mathrm{mg} / \mathrm{mL}$) exhibit the
highest oral activity. It seems to be noteworthy that the lipophilicity of compound + is comparable to that of JM 216 (I_{R} $=11.0$). The pivalate complexes (1. 3-6) were generally more active than the valcrate complexes. although they exhibit similar behavior in HPLC or water solubility. The pisalate group has been widely used to obtain lipophilic derivatives of too hydrophillic drugs so as to cnhance their bioavailabilty. ${ }^{22}$ This ligand seems to alford more bioavailability of its metal complexes than valerate. The complexes substituted by more than two valcrates are inactive and even toxic in the case of the complex fully substituted by valcrate. The complexes of too hydrophilic or too hydrophobic character showed no or only marginal oral activity. The inactivity of too hydrophilic complexes such as $\left[\mathrm{Pt}(\mathrm{OAc})_{4}(\right.$ dach $\left.)\right]$ may be ascribed to last climination in the gastro-intestinal tract or difficulty to pass biological membrane. On the other hand. highly lipophilic complexes are practically insoluble in water. which prohibits from molecular absorption through the biological membrane csen though their lipophilicity is high. The water solubility of the present complexes was measured and also listed in Table 1. The water solubility of the title complexes decreases in the order of increasing lipophilicity as expected. The complex 4 . the most active among the present complexes. showed a moderate water solubility (3.t $\mathrm{mg} / \mathrm{mL})$ higher than JM216 ($0.5 \mathrm{mg} / \mathrm{mL}$) . although its hy drophobicity is comparable to that of JM216 as above-mentioned. Other orally active complexes 5 and 7 showed considerably dilferent lipophilicity and solubility compared with the complex 4. However. such an ampiphilic character seems to be an important factor for diffusion or partition of a drug through the biological membranes. The lipophilicity ws. anticancer activity relationship is. however. not casy to generalize because the antitumor activity also depends upon other factors such as reduction potential and molecular geometry of the complexes.

Acknowledgment. This rescarch was financially supported by KOSEF and the Ministry of Science and Technology in Korca.

Supplementary Material. Tables of crystallographic details. non-hydrogen positional parameters. bond distances and angles. anisotropic and isotropic thermal parameters for the present compounds (7 pages). The Supporting materials will be given upon your request to the correspondance author. (Tel: +82-2-958-5081. Fax: +82-2-958-5089. E-mail: yssohn ákistmail.kist.re.kr)

References

1. Kelland, I. R.: Murrer, B. A.: Abel, G.: Giandomenice, C. M.: Mistry, P.: Harrap, K. R. Cancer Res. 1992, 52, 822.
2. Kizu, R: Nakanish, T.: Hayagawa, K.: Matswawa, A: Eriguchi, M.: Takeda, Y.: Akiyama. N.: Tashiro. T.: Kidani, Y. Cancer Chemother: Phavnacol. 1999. 43.97.
3. Choi, S.: Filotto, C.: Bisanzo. M.: Delaney. S.: Lagasee, D.: Whitworth. J. L.: Jusko. A.: Li. C.: Wood. N. A.: Willingham, J.: Schwenker, A.: Spaulding, K. Ihorg. Chem.

1998, 37, 2500.
4. Barnard, C. F. I.: Vollano, I. F.: Chaloner, P. A.: Dewa, S. Z. Inorg Chem. 1996, 35,3280 .
5. Giandomenico, C. M.: Abrams, M. 1.: Murrer, B. A.: Vollano, l. F.: Rheinheimer, M. I.: Wyer, S. B.: Bossard. G. E.: Higgins III, T. D. Inorg, Chem. 1995, 3f, 1015.
6. Galanski, M. Keppler, B. K. Ihorg, (hem. 1996, 35, 1709.
7. Khokhar, A. R.: Al-Baker, S.: Shamsuddin, S.: Siddik, 7. H. J. hed (hem. 1997, 10, 112.
8. Yoshida, M.: Khokhar, A. R.: Siddik, 7. H. Cancer Res. 1994, 54, 4691.
9. Kiza, R.: Naganish, T.: Miyazaki, M.: Tashiro. T.: Noji, M.: Matsuzawa, A: Eriguchi. M.: Takeda. Y:: Nkivama, N.: Kidani, Y. Inticancer Dozg 1996. 7, 248.
10. Kim, K. M.: Lee, Y.-A.: Lee, S. S.: Sohn, Y. S. Inorg. Chim. Icta 1999, 292. 52.
11. Lee, Y.-A.: Lee, S. S.: Kim, K. M.: Chung. Y. K.: Lee, C'. O: Sohn, Y. S. J. Aed. Chem. 2000. $+5,1409$.
12. Khokhar, A. R.: Al-Baker, S.: Siddik, 7. H. J. Inorg. Biochem. 1994, 54, 39.
13. Yamashila, T.: Hirose, J. Noji. M.: Sailo, R.: Tomida, H.:

Kidani, Y. Biol. Ihum. Bull. 1993, 16, 1014.
14. Song, R: Kim, K. M.: Lee, S. S.: Shon, Y. S. Inorg. Chem. 2000, 39, 3567.
15. Sheldrick, G. M. SHELLS-86: A 1 Mogram for Simature Detenmination: University of Göttingen: (jemany, 1986.
16. Sheldrick. G. M. SHEL_Y -97: A Program for Situcture Refinemen: University of Götingen: Gimmany, 1997
17. I ambert, W. J. J. Chromatogr: A 1993, 656, 469.
18. Kureda, R.: Neidle, S.: Ismail, I. M.: Sadker P. J. Inorg. (hem. 1983, 22, 3620.
19. Goto, M.: Hirowe. T.: Noji, M.: Lec, K. I.: Suito, R: Kidani, Y. Chem. Pharm. Bull. 1992, $40,1022$.
20. McKeage, M. J.: Raynaud, F.: Ward, J.: Berry, C.: O Dell, D.: Kelland, L. R.: Murrer, B.: Santabarbara, P?: I larrap, K. R.: Judson, I. R. J. Chin. Oncol. 1997, I5, 2691.
21. Mellish, K. J.: Kelland, L. R. Cancer Res. 1994, 54, 6194.
22. Shimizu, K.: Saito, A.: Shimada, J.: Ohmichi, M.: Jiraga, Y.: Inamatsu, I.: Shimada, K.: lanimura, M.: Fujita, Y.: Nishikawa, T. Oguma, T: Yamamoto, S. Antmiconh Agents (hemother: 1993, 37, 1043

