• Title/Summary/Keyword: Anharmonic

Search Result 20, Processing Time 0.019 seconds

Local Structure Invariant Potential for InxGa1-xAs Semiconductor Alloys

  • Sim, Eun-Ji;Han, Min-Woo;Beckers, Joost;De Leeuw, Simon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.857-862
    • /
    • 2009
  • We model lattice-mismatched group III-V semiconductor $In_{x}Ga_{1-x}$ alloys with the three-parameter anharmonic Kirkwood-Keating potential, which includes realistic distortion effect by introducing anharmonicity. Although the potential parameters were determined based on optical properties of the binary parent alloys InAs and GaAs, simulated dielectric functions, reflectance, and Raman spectra of alloys agree excellently with experimental data for any arbitrary atomic composition. For a wide range of atomic composition, InAs- and GaAs-bond retain their respective properties of binary parent crystals despite lattice and charge mismatch. It implies that use of the anharmonic Kirkwood-Keating potential may provide an optimal model system to investigate diverse and unique optical properties of quantum dot heterostructures by circumventing potential parameter searches for particular local structures.

Arnoldi Algorithm for the Simulation of Multidimensional Infrared Spectroscopy

  • Hayashi, Tomoyuki;Mukamel, Shaul
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.8
    • /
    • pp.1097-1101
    • /
    • 2003
  • The cubic and quartic anharmonic force field of malonaldehyde is calculated using density functional theory at the B3LYP/6-31G(d,p) level, and used to simulate coherent infrared vibrational spectra. 12 normal modes are included in the simulation, and the Arnoldi method is employed for the diagonalization of the Hamiltonian. The calculated three pulse infrared signals in the k1 + k2 - k3 direction show signatures of the intramolecular hydrogen bond couplings between the C=O stretch, H-O-C bend and O-H stretch vibrations.

A MECHANISM OF THE STRANGE ISOTOPIC FRACTIONATION OF OXYGEN FOUND IN METEORITE AND LABORATORY

  • Yang, J.;Kim, S.K.;Soh, K.S.;Yee, J.H.;Kim, S.W.;Kim, K.H.;Yoo, K.W.
    • Journal of Astronomy and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.1-10
    • /
    • 1990
  • The thermodynamic distribution of the vibrational states of ozone coupled with anharmonic predissociation produces an unusual isotopomeric pattern of oxygen molecules. The model presented here explains the experimental data obtained from the electric discharge of oxygen gas to produce ozone condensed on a quartz at 77K.

  • PDF

Tensor Components in Three Pulse Vibrational Echoes of a Rigid Dipeptide

  • Dreyer, Jens;Moran, Andrew M.;Mukamel, Shaul
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.8
    • /
    • pp.1091-1096
    • /
    • 2003
  • The effects of different polarization conditions on vibrational echo signals are systematically explored for the rigid cyclic dipeptide 2,5-diazabicyclo[2,2,2]octane-3,6-dione. An anharmonic vibrational Hamiltonian is constructed by computing energy derivatives to fourth order using density functional theory. Molecular frame transition dipole orientations are then used to calculate polarization dependent orientational factors corresponding to various Liouville space pathways. Enhancement and elimination of specific peaks in twodimensional correlation plots is accomplished by identifying appropriate pulse configurations.

Elastic Network Model for Nano and Bio System Analysis (나노 및 바이오 시스템 해석을 위한 탄성네트워크모델)

  • Kim, Moon-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.668-669
    • /
    • 2008
  • In this paper, we introduce various coarse-grained elastic network modeling (ENM) techniques as a novel computational method for simulating atomic scale dynamics in macromolecules including DNA, RNA, protein, and polymer. In ENM, a system is modeled as a spring network among representative atoms in which each linear elastic spring is well designed to replace both bonded and nonbonded interactions among atoms in the sense of quantum mechanics. Based on this simplified system, a harmonic Hookean potential is defined and used for not only calculating intrinsic vibration modes of a given system, but also predicting its anharmonic conformational change, both of which are strongly related with its functional features. Various nano and bio applications of ENM such as fracture mechanics of nanocomposite and protein dynamics show that ENM is one of promising tools for simulating atomic scale dynamics in a more effective and efficient way comparing to the traditional molecular dynamics simulation.

  • PDF

RFID Tag 기술

  • 변상기
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.2
    • /
    • pp.32-43
    • /
    • 2004
  • RFID 시스템에서 태그는 리더와 전자기 에너지 교환에 의해 동작을 하며 배터리를 사용하는 active 형 태그와 배터리를 사용하지 않는 passive형 태그로 크게 구분된다. 또한 태그는 자체 회로구조에 의해 harmonic 태그, anharmonic 태그, sequenced amplifier 태그로 나뉜다. Passive 태그에서는 리더의 반송파 backscatter 방식을 이용하여 동작을 하며 active 태그는 자체 발진회로에 의해 태그정보를 송신한다. 태그의 변조방식으로 PSK, FSK, ASK 등을 사용하며 변조방법에 따라 회로 구성과 프로토콜 설계가 달라진다. 또한 리더의 전파 신호를 정류하기 위하여 렉테나(rectenna)가 필요하다. 본 논문에서는 태그의 분류, 동작, 구조 등에 관한 일반적인 내용을 기술하였다. 특히 UHF 대역 이상의 태그 기술 최근 추세가 안테나 부분을 제외하고 CMOS one chip화 하는 수준으로서 900 MHz UHF 대역, 2.45 GHz RFID 칩이 상용화 되어 있다. 칩의 내부구조와 태그의 변조방식에 의거한 동작에 관한 개괄적인 내용을 서술하였다.

RESONANT MOTION OF A PARTICLE ON AN AXISYMMETRIC CONTAINER SUBJECT TO HORIZONTAL EXCITATION

  • Suh, Yong-Kweon
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.2 no.1
    • /
    • pp.51-70
    • /
    • 1996
  • This study is generalization of the study of Miles[Physica 11D, 1984, pp.309-323]on the resonant motion of a spherical pendulum, which is equivalent to a particle on a spherical container subject to a linear, horizontal excitation. This study covers an arbitrary shape of container and a more general excitation (horizontal but elliptic motion). The averaging method is applied to reduce the governing equations to an autonomous system with cubic nonlinear terms, under the assumption of small amplitude of the container motion. It is shown that both the container shape and the excitation pattern affect the particle dynamics. Under the linear excitation, the anharmonic motion of the particle is possible only for a certain finite range of the parameter a controling the container shape. Stability of the particle's harmonic motion is also influenced by the excitation pattern; as the excitation trajectory becomes closer to a circle, the particle's motion has a stronger tendency to become stable and to follow the rotational direction of the excitation. Under a circular excitation, the motion is always stable and circular with the same rotational direction as the excitation. Analogy between the present model and that of the surface wave inside a circular is studied quantitatively.

Using Harmonic Analysis and Optimization to Study Macromolecular Dynamics

  • Kim Moon-K.;Jang Yun-Ho;Jeong Jay-I.
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.3
    • /
    • pp.382-393
    • /
    • 2006
  • Mechanical system dynamics plays an important role in the area of computational structural biology. Elastic network models (ENMs) for macromolecules (e.g., polymers, proteins, and nucleic acids such as DNA and RNA) have been developed to understand the relationship between their structure and biological function. For example. a protein, which is basically a folded polypeptide chain, can be simply modeled as a mass-spring system from the mechanical viewpoint. Since the conformational flexibility of a protein is dominantly subject to its chemical bond interactions (e.g., covalent bonds, salt bridges, and hydrogen bonds), these constraints can be modeled as linear spring connections between spatially proximal representatives in a variety of coarse-grained ENMs. Coarse-graining approaches enable one to simulate harmonic and anharmonic motions of large macromolecules in a PC, while all-atom based molecular dynamics (MD) simulation has been conventionally performed with an aid of supercomputer. A harmonic analysis of a macroscopic mechanical system, called normal mode analysis, has been adopted to analyze thermal fluctuations of a microscopic biological system around its equilibrium state. Furthermore, a structure-based system optimization, called elastic network interpolation, has been developed to predict nonlinear transition (or folding) pathways between two different functional states of a same macromolecule. The good agreement of simulation and experiment allows the employment of coarse-grained ENMs as a versatile tool for the study of macromolecular dynamics.

Model Simulation of a HF Chemical Laser and Numerical Analyses of It's Behaviors (HF 화학 레이저에 대한 Model Simulation과 그 작동 특성의 수치분석)

  • Yang Mee Kim;Ung Kim;Ung-In Cho
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.168-176
    • /
    • 1989
  • Theoretical analysis of HF chemical laser models are performed through chemical reaction kinetics, gain process and stimulated emission process. A chemical laser of F+$H_2$ nonchain reaction is investigated through V-R transitions of excited HF for vibrational levels up to v = 3 and rate equations including nonchain pumping and deactivation. On this analysis, harmonic and anharmonic vibrational levels are considered separately and the results of the corresponding power calculations are showed very small difference between the two. Output powers are calculated with variation of temperature and initial concentrations of $H_2$. A HF chemical laser of $H_2$+$F_2$ chain reaction is also simulated with a premixed initial condition. Results of present model calculations are satisfactory through comparison with detailed calculations reported by others.

  • PDF