DOI QR코드

DOI QR Code

Tensor Components in Three Pulse Vibrational Echoes of a Rigid Dipeptide

  • Dreyer, Jens (Max-Born-Institut für Nichtlineare Optik undKurzzeitspektroskopie) ;
  • Moran, Andrew M. (Department of Chemistry, Department of Physics and Astronomy,University of Rochester) ;
  • Mukamel, Shaul (Department of Chemistry, Department of Physics and Astronomy,University of Rochester)
  • Published : 2003.08.20

Abstract

The effects of different polarization conditions on vibrational echo signals are systematically explored for the rigid cyclic dipeptide 2,5-diazabicyclo[2,2,2]octane-3,6-dione. An anharmonic vibrational Hamiltonian is constructed by computing energy derivatives to fourth order using density functional theory. Molecular frame transition dipole orientations are then used to calculate polarization dependent orientational factors corresponding to various Liouville space pathways. Enhancement and elimination of specific peaks in twodimensional correlation plots is accomplished by identifying appropriate pulse configurations.

Keywords

References

  1. Mukamel, S. Annu. Rev. Phys. Chem. 2000, 51, 691. https://doi.org/10.1146/annurev.physchem.51.1.691
  2. Special Issue in Chem. Phys.; Mukamel, S.; Hochstrasser, R.,Eds.; 2001; vol. 135.
  3. Hochstrasser, R. M. Chem. Phys. 2001, 266, 273. https://doi.org/10.1016/S0301-0104(01)00232-4
  4. Golonzka, O.; Tokmakoff, A. J. Chem. Phys. 2001, 115, 297. https://doi.org/10.1063/1.1376144
  5. Hamm, P.; Lim, M.; DeGrado, W. F.; Hochstrasser, R. M. Proc.Natl. Acad. Sci. U.S.A. 1999, 96, 2036. https://doi.org/10.1073/pnas.96.5.2036
  6. Woutersen, S.; Hamm, P. J. Phys. Chem. B 2000, 104, 11316. https://doi.org/10.1021/jp001546a
  7. Zanni, M. T.; Gnanakaran, S.; Stenger, J.; Hochstrasser, R. M. J.Phys. Chem. B 2001, 105, 6520. https://doi.org/10.1021/jp0100093
  8. Zanni, M. T.; Ge, N.-H.; Kim, Y. S.; Hochstrasser, R. M. Proc.Natl. Acad. Sci. U.S.A. 2001, 98, 11265. https://doi.org/10.1073/pnas.201412998
  9. Ge, N.-H.; Hochstrasser, R. M. Phys. Chem. Comm. 2002, 5, 17.
  10. Moran, A. M.; Dreyer, J.; Mukamel, S. J. Chem. Phys. 2003, 118,1347. https://doi.org/10.1063/1.1528605
  11. Moran, A. M.; Park, S.-M.; Dreyer, J.; Mukamel, S. J. Chem.Phys. 2003, 118, 3651. https://doi.org/10.1063/1.1538243
  12. Dreyer, J.; Moran, A. M.; Mukamel, S. J. Phys. Chem. B 2003,107, 5967. https://doi.org/10.1021/jp030108b
  13. Mukamel, S. Principles of Nonlinear Optical Spectroscopy;Oxford University Press: New York, Oxford, 1995.
  14. Molecular Light Scattering and Optical Activity; Barron, L. D.,Ed.; Cambridge University Press: Cambridge, 1982.
  15. Lee, C.; Yang, R. G.; Parr, W. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  16. Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett.1989, 157, 200. https://doi.org/10.1016/0009-2614(89)87234-3
  17. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  18. Hertwig, R. H.; Koch, W. Chem. Phys. Lett. 1997, 268, 345. https://doi.org/10.1016/S0009-2614(97)00207-8
  19. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery,J. A.; Stratmann, R. E.; Burnat, J. C.; Dapprich, S.; Millam, J. M.;Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.;Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.;Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P.Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.;Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.;Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.;Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; AlLaham, M.A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe,M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.;Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A.Gaussian 98 (Revision A.9); Gaussian, Inc.: Pittsburgh, PA, 1988.

Cited by

  1. Coherent third-order spectroscopic probes of molecular chirality vol.122, pp.13, 2005, https://doi.org/10.1063/1.1869495
  2. Coherent control of pump-probe signals of helical structures by adaptive pulse polarizations vol.124, pp.3, 2006, https://doi.org/10.1063/1.2107667
  3. Cross-peak-specific two-dimensional electronic spectroscopy vol.104, pp.36, 2007, https://doi.org/10.1073/pnas.0701201104
  4. Dynamics of Light Harvesting in Photosynthesis vol.60, pp.1, 2009, https://doi.org/10.1146/annurev.physchem.040808.090259
  5. Spectroscopic elucidation of uncoupled transition energies in the major photosynthetic light-harvesting complex, LHCII vol.107, pp.30, 2010, https://doi.org/10.1073/pnas.1006230107
  6. Solving structure in the CP29 light harvesting complex with polarization-phased 2D electronic spectroscopy vol.108, pp.10, 2011, https://doi.org/10.1073/pnas.1012054108
  7. Decoherence in Weakly Coupled Excitonic Complexes vol.115, pp.16, 2011, https://doi.org/10.1021/jp108247a
  8. Ultrafast Multidimensional Spectroscopy: Principles and Applications to Photosynthetic Systems vol.18, pp.1, 2012, https://doi.org/10.1109/JSTQE.2011.2112640
  9. Determination of Excited-State Energies and Dynamics in the B Band of the Bacterial Reaction Center with 2D Electronic Spectroscopy vol.3, pp.17, 2012, https://doi.org/10.1021/jz300841u
  10. Elucidation of the timescales and origins of quantum electronic coherence in LHCII vol.4, pp.5, 2012, https://doi.org/10.1038/nchem.1303
  11. Structure, Dynamics, and Function in the Major Light-Harvesting Complex of Photosystem II vol.65, pp.6, 2012, https://doi.org/10.1071/CH12022
  12. Ultrafast Spectroscopic Signatures of Coherent Electron-Transfer Mechanisms in a Transition Metal Complex vol.120, pp.29, 2016, https://doi.org/10.1021/acs.jpca.6b04313
  13. Polarization-Controlled Two-Dimensional White-Light Spectroscopy of Semiconducting Carbon Nanotube Thin Films vol.120, pp.30, 2016, https://doi.org/10.1021/acs.jpcc.6b04961
  14. Computing infrared spectra of proteins using the exciton model vol.38, pp.16, 2016, https://doi.org/10.1002/jcc.24674
  15. Two-color two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper vol.16, pp.22, 2008, https://doi.org/10.1364/OE.16.017420
  16. Photon echo studies of photosynthetic light harvesting vol.101, pp.2-3, 2009, https://doi.org/10.1007/s11120-009-9464-9
  17. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems vol.446, pp.7137, 2003, https://doi.org/10.1038/nature05678
  18. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  19. Coherent Two-Dimensional Optical Spectroscopy vol.108, pp.4, 2008, https://doi.org/10.1021/cr078377b
  20. Nature of Excited States and Relaxation Mechanisms in C-Phycocyanin vol.113, pp.48, 2009, https://doi.org/10.1021/jp908093x
  21. Two-Dimensional Electronic Spectroscopy of the D1-D2-cyt b559 Photosystem II Reaction Center Complex vol.1, pp.19, 2003, https://doi.org/10.1021/jz100972z
  22. Two-dimensional electronic spectroscopy and photosynthesis: Fundamentals and applications to photosynthetic light-harvesting vol.386, pp.1, 2003, https://doi.org/10.1016/j.chemphys.2011.04.025
  23. Nonlinear optical signatures of ultraviolet light-induced ring opening in α-terpinene vol.15, pp.2, 2003, https://doi.org/10.1088/1367-2630/15/2/025007
  24. Simulation of Two-Dimensional Infrared Spectroscopy of Peptides Using Localized Normal Modes vol.12, pp.4, 2016, https://doi.org/10.1021/acs.jctc.5b01198
  25. Probing excited-state dynamics with quantum entangled photons: Correspondence to coherent multidimensional spectroscopy vol.153, pp.5, 2003, https://doi.org/10.1063/5.0015432