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The cubic and quartic anharmonic force field of malonaldehyde is calculated using density functional theory at 
the B3LYP/6-31G(d,p) level, and used to simulate coherent infrared vibrational spectra. 12 normal modes are 
included in the simulation, and the Arnoldi method is employed for the diagonalization of the Hamiltonian. The 
calculated three pulse infrared signals in the k1 + k2 - k3 direction show signatures of the intramolecular 
hydrogen bond couplings between the C=O stretch, H-O-C bend and O-H stretch vibrations.
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Introduction

Nonlinear infrared (IR) spectroscopies provide detailed 
information on molecular structures and their time evolution 
on the subpicosecond timescale.1,2 These techniques there­
fore provide a powerful tool for exploring the structure and 
proton transfer dynamics in hydrogen bonded systems.

In previous studies, we constructed a vibrational exciton 
Hamiltonian expanded to quartic order in a subset of internal 
coordinates of a metal carbonyl complex RDC and obtained 
a good agreement with experiment.3 In the present work, the 
vibrational exciton Hamiltonian is expanded in the normal 
coordinates and the Implicit Restate Arnoldi Method 
(IRAM) is used for the diagonalization of the Hamiltonian 
matrix. This allows us to handle a large Hamiltonian matrix 
and describe the spectroscopy of large molecules with many 
vibrational coordinates.

We have calculated three pulse infrared signals of 
Malonaldehyde (MA). MA is a prototype for intramolecular 
proton transfer, and its structure and dynamics have been the 
focus of several experimental and theoretical investigations 
over the past two decades.4,12 Infrared experiments show that 
the structure is planar and asymmetric (Figure 1).4,5 
Microwave spectroscopic studies of Wilsons group7,8 and 
others6,9 suggest that proton transfer occurs via tunneling of 
a hydrogen atom between two oxygens. An ab Initio 
molecular dynamics study at 500 K implied a sub ps proton 
transfer.10 The ab Initio potential energy surface (PES) for 
intramolecular proton transfer has been reported.11,12

In the present work we compute the cross peaks in infrared 
four-wave mixing, induced by anharmonic couplings between 
the C=O stretch, H-O-C bend and O-H stretch vibrations 
related to the intramolecular hydrogen bonding.

Vibration지 Hamiltonian and the Ab Initio Force Field

Geometry optimization and normal mode calculations of 
MA were executed at the B3LYP/6-31G(d,p) level using 
Gaussian 98.13 The potential energy V was expanded around 
the equilibrium geometry to quartic order in a selected set of 
normal coordinates Qk. The Hamiltonian is,

Figure 1. Equilibrium structure of MA. Intramolecular hydrogen 
bonding is marked by the dotted line.
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where ( )eq represents the derivatives taken at the equilibrium 
geometry. The expansion may be carried out using either 
cartesian, internal, or normal coordinates.3 Expressing the 
force field in local coordinates is most suitable for 
transferring parameters among different systems. However, 
the kinetic energy in eq. (1) is not then diagonal and is given 
by the matrix:

K = s 丁 G-1s, (5)

where s represents the column vector of local coordinates, sT 

is its transpose, and G is Wilson’s G-matrix.14 The off- 
diagonal elements of G were neglected in a previous study.3 
The normal coordinates are most suitable for the simulation 
of linear and nonlinear vibrational spectroscopy; using these 
coordinates, both the kinetic energy and the quadratic force 
fields are diagonal and we can cleanly separate the selected 
set of coordinates from all others to quadratic order. 
Moreover, the vibrational exciton Hamiltonian is block 
diagonal for normal coordinates with different symmetries.
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The cubic and quartic anharmonic force constants were 
determined numerically by computing first and second 
derivatives of analytical quadratic force constants with 3- 
point central difference formulas.15 The quartic expansion 
coefficients involving 4 different normal coordinates are 
small compared to the other terms and were neglected. The 
analytic quadratic force constants in normal coordinates at 
the distorted geometry along the normal mode Qk (Fk土) are 
obtained by

' 一一T _ 一
Fk± = Ueq Fk±Ueq (k = 1, ..., 3N-6), (6)

where

(F k 土 )ij Kd VdQiQj)顷 (7)

(Fk 土為顼 V/dXiXj 膈 (8)

(Ueq為.2X旳)eq , (9)

『Tand Ueq represents the transposed matrix of Ueq. Xi is a 
cartesian coordinate, ( )±々 represents the derivatives taken 
at the position displaced in + and - directions along the 
normal coordinate Qk. The displacement 8 was set to 0.02 
Bohr (0.0106 A).

Computing The Vibration지 States

The vibrational Hamiltonian was recast using normally 
ordered Bosonic creation (Bk+ ) and annihilation (Bk) operators 
and expanded in a harmonic basis set of products of local 
harmonic oscillators (|mi m/…m〉= 口』〃九〉)following the 
procedure described earlier.3 The vibrational eigenstates 
were obtained by diagonalizing the Hamiltonian matrix with 
the dimension (n + m)!/(m!n!), where m is the number of 
modes included and n is the total number of vibrational 
quanta. This number increases exponentially with n and m, 
and only a very limited number of normal modes can be 
handled by standard diagonalization methods. However, we 
note that the Hamiltonian matrix is very sparse because all 
the matrix elements between two basis states which differ by 
more than 4 quanta vanish,

m
Hij = 0 if £] |v,,n - Vj,"| >4, (10)

where 卩挪 represents the number of vibrational quanta on 
the n'th normal mode in the i'th basis state. To save memory, 
the coordinate storage format was therefore used for the 
Hamiltonian matrix.16 In that format, matrix elements are 
represented by three 1-dimensional arrays, val(nnz) in which 
the value of each matrix element is stored, ind_ x(nnz) and 
ind_ y(nnz) which represent rows and columns of these 
elements. Each array has the dimension of the number of 
nonzero elements of the matrix (nnz).

Furthermore, only a small number of the lowest eigenvalues 
and corresponding eigenvectors are needed because we are 
interested only in low lying vibrational states which can be 
excited by infrared light. Therefore the Implicit Restarted 
ARNOLDI Method (IRAM)17 was used for diagonalization

Table 1. Vibrational state frequencies (in cm-1) of CO2 calculated 
using the normal mode basis including all the internal coordinates 
are compared with experiment. The numbers in parenthesis 
represent the number of quanta on the symmetric stretch, bending, 
and anti-symmetric stretch mode from left to right

Exciton State Eigenvector Calc. Exp.a
2 1.0 (010) 651.0 667.4
3 0.5 (100) - 0.8 (020) 1282.0 1285.4
4 0.8 (100) + 0.5 (020) 1367.5 1388.2
5 0.6 (110) - 0.8 (030) 1910.6 1932.5
6 0.8 (110) + 0.6 (030) 2047.5 2076.9
7 1.0 (001) 2361.1 2349.2

15 0.4 (101) - 0.9 (021) 3610.2 3612.8
16 0.8 (101) + 0.4 (021) 3707.0 3714.8

“Data from Ref. 22.

of the Hamiltonian. The Arnoldi subroutine was taken from 
public domain ARPACK package.17-21 This algorithm is based 
on the iterated use of the definition of the action of H on a 
vector v to construct a sequence of vectors from a suitable 
first guess. The Krylov subspace spanned by these vectors is 
used to approximate the eigenvectors and eigenvalues. The 
ARPACK algorithm directly computes a set of eigenvalues 
and eigenvectors using the implicitly restarted Arnoldi 
method (IRAM). In our calculation, 25 normal modes and 4 
vibrational quanta (23,751 x 23,751 Hamiltonian matrix) 
can be included on 256 MB RAM PC.

To test the accuracy of this method, we calculated the 
vibrational states of CO2 using the vibrational exciton model 
in the normal mode basis including all 4 internal coordinates 
and compared them with experiment.22 The B3LYP/6-31+ 
G(d) level was employed for the calculation. The calculated 
and experimental frequencies of the exciton states are 
summarized in Table 1. The energy splittings due to the 
Fermi resonance calculated based on normal mode basis are 
85.5 cm-1 for ((100),(020)), 137.9 cm-1 for ((110),(030)), 
and 96.8 cm-1 for ((101),(021)), and they are in very good 
agreement with the experimental values of 102.8 cm-1, 144.4 
cm-1, and 102.0 cm-1. We found the vibrational exciton 
states generated from the local mode coordinates to be much 
less accurate.

Vibrational Spectra of M지on지dehyde

All 12 normal modes with frequency above 1000 cm-1 in 
A' symmetry (in-plane mode) were included in our study. 
We adopted the following three criteria in constructing the 
vibrational exciton basis. First, all states with 4 vibrational 
quanta are included, which is the minimum requirement for 
quantitative prediction of the eigenvalues and the eigen­
vectors of the single and double exciton states. Second, all 
basis states with up to 6 quanta and total energy below 8000 
cm-1 were included. Third, all states having up to fifth order 
coupling with the fundamental of V17 (C=O stretch) are 
included in order to reproduce the C=O stretch overtone (v = 
2) frequency more accurately. These criteria resulted in 7233 
exciton states. The 7233 x 7233 Hamiltonian matrix was
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Figure 2. Simulated linear infrared absorption spectra of MA.

constructed and diagonalized to obtain the 553 eigenvalues 
below 5900 cm-1 and corresponding eigenvectors. The IR 
intensities were calculated from the dipole moment derivative 
with respect to the mass-weighted normal coordinates.

The calculated linear infrared absorption spectrum is shown 
in Figure 2. The peak frequencies are presented in Table 2 
and compared with experiment. With few exceptions, the 
calculated peak positions from the vibrational exciton model 
are shifted to lower frequency compared to the harmonic 
ones. V12 and V13 have a quartic resonance and mixed with 
each other in the exciton calculation. The calculated H-O-C 
bend (v® and C=O stretch (V17) peaks are in good agree­
ment with experiment, but the O-H stretch (V19) frequency is 
lower than experiment. This is due to overestimating the 
cubic couplings between V19 and the overtone of V14, the 
combination band of V8 and V15, V11 and V14, and V13 and V14. 
This can be attributed to the lack of convergence of the 
Taylor expansion of the PES around the equilibrium geom­
etry. The tunneling barrier height of proton transfer is 
estimated to be very low (42 kJmol-1 23) and quartic force 
field could not model this PES with a sufficient accuracy. 
Including a quintic (fjklm) and sextic fjklmn) force field should 
improve the accuracy of the peak position. However, in order 
to reproduce the experimental tunneling vibrational splitting

Figure 3. Double-sided Feynman diagrams describing the third- 
order response in the direction km = k1 + k2 - k3.
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(21.8 cm-1), the double-well potential along the proton 
transfer coordinate should be modelled explicitly.11 This 
goes beyond the scope of this work.

We have calculated the three pulse infrared signal of MA 
generated in the direction km = k1+ k2 - k3 with ZZZZ 
polarization configuration using the sum over states expres- 
sion24 and orientational factors in Eq. 13 of Reference.25 The 
response function is given by the sum of two types of 
Liouville space pathways,

*,
R (t3,t2, t1) = R4( t3, t2,t1)— R3( t3, t2, t1)- (11)

The Liouville space paths are represented by the double­
sided Feynman diagrams shown in Figure 3 where state 시, b 
and c correspond to one of the vibrational exciton states. The 
signal in the frequency domain is obtained by,

S(，1，切2，切3)= J_s dt3 J—* dt2R( t3, t2, t1)

x exp(一，(綃3 +。。上)). (12)

The incident pulses were assumed to have a broad band­
width of ~400 cm-1. A homogeneous linewidth of 3 cm-1 
was taken for all transitions.

The signal for the three incident pulses tuned to 1678, 
1480 and 1480 cm-1 is displayed in Figure 4. We found 339

Table 2. Frequencies (in cm-1) obtained from the vibrational 
exciton model are compared with harmonic normal mode 
calculations and with experiment

Exciton State Normal Mode
--------------------------------------------------------------------- Exp.a 
Level Frequency Mode Description Frequency

2 1019.0 V8 1018.8
3 1123.6 V11 1122.3 1092
4 1299.3 V12 1302.3 1260
5 1347.6 V13 1405.6
6 1403.6 V14 1419.2 1358
7 1482.6 V15 1490.7 1452
8 1640.3 V16 H-O-C bend 1654.8 1593
9 1678.0 V17 C=O stretch 1718.1 1655

20 2587.3 V18 O-H stretch 3042.8 2960
29 2801.1 V19 C-H stretch 2991.2
41 3058.2 V20 C-H stretch 3181.8 3100
45 3124.0 V21 C-H stretch 3237.6

aData from Ref. 4.
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Figure 4. Three pulse infrared signal (absolute value of S(t1 = 
。2,。3) (Eq. 12)) of MA in the km direction. The three 24 fsec 
incident pulses are tuned at 1678, 1480 and 1480 cm-1 and have a 
bandwidth of 420 cm-1.
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Table 3. Frequencies and corresponding Liouville space pathways 
(in cm-1) of the peaks in Figure 4 and 5. The Liouville space 
pathway is specified by the diagram, R4 or R3 and the states a, b 
and c in Figure 3. a, b and c correspond to one of the vibrational 
exciton states in Table 4

Peak Liouville Space Pathway
(32,33) Diagram a b c

(3326,1640)
(3326,1686)
(3361.1678)
(3361,1683)
(2953.1678)
(2953,1275)
(3326.2587)
(3361.2587)
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Table 4. Frequencies (in cm-1) and eigenvectors of the exciton 
states in Table 3. Vv represents u vibrational quanta on the Vn 
normal mode n

Exciton
State Frequency Eigenvector

8 1640.3 -0.94 (1v16)+0.16 (1v161v19)+
9 1678.0 +0.93 (1V17>+0.18 (1V171V19>+

20 2587.3 +0.66 (1v19)+0.30 (2v19)+
36 2953.5 -0.71 (1V121V17)-0.39 (1V20)-0.34 (1杓2加6)+
51 3326.4 -0.93 (2v16)-0.14 (2v161v19)+
52 3361.5 +0.91 (2v17)+0.16 (2v171v19)+

peaks generated by different Liouville space pathways. The 
frequencies of peaks and corresponding Liouville space 
pathways are summarized in Table 3. The frequencies and 
the eigenvectors of the related vibrational exciton states are 
given in Table 4 The strongest peaks at (切2,/3) = (3326 
cm-1, 1640 cm-1) and (3326,1686) come mainly from R4 

and R3 diagrams including the exciton states 8 and 51. The 
8 and 51 exciton states are primarily v = 1 and v = 2 of V16 

(H-O-C bending mode) (Table 4), and these peaks are

7E6
5.628E6 
4.525E6 
3.639E6 
2.926E6 
2.352E6 
1.891E6 
1.521E6 
1.223E6 
9.832E5 
7.905E5 
6.356E5 
5.111E5 
4.109E5 
3.304E5 
2.657E5 
2.136E5 
1.717E5 
1.381E5 
1.11E5
8.927E4 
7.178E4 
5.771 E4 
4.64E4 
3.731 E4 
3E4

Figure 5. Three pulse infrared signal (absolute value of S(t1 = 0, 
32, co3) (Eq. 12)) of MA in the km direction. The three 25 fsec 
incident pulses are tuned to 1692, 1669 and 774 cm-1 and have a 
bandwidth of 400 cm-1. 

generated by transitions between the fundamental and 
overtone of V16. The next most intense peaks at (3361,1678) 
and (3361,1683) come from R4 and R3 diagrams involving 
the transitions between v = 1 and v = 2 of V17 (C=O stretch). 
The weaker peaks at (2953,1678) and (2953,1275) corre­
spond to R4 and R3 diagrams involving the transitions 
between v17 (C=O stretch) fundamental, v19 (O-H stretch) 
fundamental, and v16 (H-O-C bend) fundamental. The inten­
sities of these 2 peaks come from anharmonic (mainly cubic) 
couplings between v17 (C=O stretch), v16 (H-O-C bend), and 
V19 (O-H stretch). There are many other peaks resulting from 
anharmonic couplings between different normal modes.

The kIII signal where the incident pulses are tuned at 1692, 
1669 and 774 cm-1 is displayed in Figure 5. We found 57 
peaks generated by different Liouville space pathways. The 
strongest peak at (3326,2587) corresponds to the R4 diagram 
involving transitions between the v16 (H-O-C bend) funda­
mental, overtone of v15 (H-C-C bend), and v19 (O-H stretch) 
fundamental. The Intensity of this peak is related to anhar- 
monic couplings between v16 (H-O-C bend), v15 (H-C-C 
bend) and v19 (O-H stretch). This peak has a side band at 
(3361,2587) coming from the R4 diagram involving the 
transitions between fundamental v17 (C=O stretch), overtone 
of v16 (H-O-C bend), and v19 (O-H stretch) fundamental. The 
intensities of these peaks reflect anharmonic (mainly cubic) 
couplings between v17 (C=O stretch), v16 (H-O-C bend), and 
v19 (O-H stretch).

Discussion

We have identified signatures of the intramolecular hydro­
gen bonding couplings between the C=O stretch, H-O-C 
bend and O-H stretch vibration in the kIII signal. The short 
pulses used here generate many peaks corresponding to 
different Liouville pathways. Assuming a constant density of 
exciton states, the number of terms should be cubic in the 
pulse bandwidth. A 300 cm-1 bandwidth was reported in 
mid-infrared region by difference-frequency mixing of two 
visible phase-locked linearly chirped pulses in GaAs,26 and 
broader pulses are expected to be available in the near future.

In order to reproduce the vibrational splitting, the double­
well potential along the proton transfer coordinate and its 
coupling to other intramolecular coordinates should be 
modelled explicitly. Symmetric mode coupling (SMC) and 
squeezed double well potential (SQZ) which are two­
dimensional model potentials for proton-transfer system 
proposed by Takada et. al. could be used to that end.27 It is 
also important, especially for larger molecules, to describe 
highly excited low frequency modes correctly. This may be 
accomplished using curvilinear normal modes and local 
modes (CNLM) that use the Morse potential as a reference 
for local stretches and harmonic oscillator for the normal 
modes.28
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