• Title/Summary/Keyword: Angular spread

Search Result 36, Processing Time 0.023 seconds

IEEE 802.22 시스템을 위한 다중 안테나 기법의 성능 비교, 분석

  • Jeong Ho-Cheol;Park Hyeong-Rae;Song Myeong-Seon;Kim Chang-Ju
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.2 s.58
    • /
    • pp.61-70
    • /
    • 2006
  • In this paper, we compare the performance of representative MIMO techniques such as space-time block code, closed-loop transmit diversity, and V-BLAST, etc., in IEEE 802.22 environments. We first develope deco-ding algorithms of the representative MIMO techniques and design a MIMO-OFDM system employing QPSK, 16 QAM, 64 QAM to cover several transmission rates. Since the frequency band used for IEEE 802.22 systems belongs mostly to V/UHF band and the angular spread of the received signal at the base station is very small, there Is a significant correlation between the signals from transmit antennas. Thus, in this paper, we compare the performance of MIMO-OFDM systems employing only two Tx antennas in correlated fading environments.

Measurement-Based Propagation Channel Characteristics for Millimeter-Wave 5G Giga Communication Systems

  • Lee, Juyul;Liang, Jinyi;Kim, Myung-Don;Park, Jae-Joon;Park, Bonghyuk;Chung, Hyun Kyu
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1031-1041
    • /
    • 2016
  • This paper presents millimeter-wave (mmWave) propagation characteristics and channel model parameters including path loss, delay, and angular properties based on 28 GHz and 38 GHz field measurement data. We conducted measurement campaigns in both outdoor and indoor at the best potential hotspots. In particular, the model parameters are compared to sub-6 GHz parameters, and system design issues are considered for mmWave 5G Giga communications. For path loss modeling, we derived parameters for both the close-in free space model and the alpha-beta-gamma model. For multipath models, we extracted delay and angular dispersion characteristics including clustering results.

MIMO Channel Modeling Using Concept of Path Morphology (Path Morphology 개념을 이용한 MIMO 채널 모델링)

  • Jeong, Won-Jeong;Yoo, Ji-Ho;Kim, Tae-Hong;Kim, Myung-Don;Chung, Hyun-Kyu;Bae, Seok-Hee;Pack, Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.2
    • /
    • pp.179-187
    • /
    • 2010
  • The use of high frequency band, broad band and MIMO antenna is expected in the next generation mobile communication system. By the rapid increase of demand for wireless communications and the explosive increase of the mobile communication services, researches for optimization of next-generation mobile communication system are required. In the existing MIMO channel models, propagation-environments are commonly classified into urban, suburban, rural area, etc. However such approaches can have drawbacks in that many different morphologies may exist even in the urban area, for example. In this paper, we introduced path morphology concept, and proposed the method of morphology classification considering the building height, density, etc. Delay spread(DS), angular spread(AS) of AoD and AoA analyzed for each environment using the ray tracing technique. Based on the analysis, a MIMO channel model appropriate in domestic environment was suggested.

Adaptive Beamforming Technique of Eigen-space Smart Antenna System (고유공간 스마트 안테나 시스템의 적응 빔형성 기술)

  • 김민수;이원철;최승원
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.10
    • /
    • pp.989-997
    • /
    • 2002
  • This paper presents a new technique that enhances the performance of the smart antenna system especially in signal environments of wide angular spread by adopting a weight vector obtained from two eigenvectors of theautocovariance matrix of the received data. While the conventional beamformingtechnique employs only one eigenvector corresponding to the largest eigenvalue, the proposed algorithm uses two eigenvectors corresponding to the largest and second largest eigenvalue in such a way that it can be robust enough to the signal environments of wide angular spread. An efficient adaptive procedure is shown to verify that the optimal weight vector consisting of the two eigenvectors is obtained with a reasonable complexity(3.5$N_2$+ 12N) and accuracy. it is also shown in this paper that the numerical results obtained from the proposed adaptive procedure well agree with those obtained from a commercial tool computing the eigen-function of MATLABTM.

A NEW ADAPTIVE BEAM-FORMING ALGORITHM BASED ON GENERALIZED ON-OFF METHOD FOR SMART ANTENNA SYSTEM (스마트 안테나 시스템을 위한 일반화된 ON-OFF방식의 새로운 적응 빔형성 알고리즘)

  • 이정자;안성수;최승원
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.10C
    • /
    • pp.984-994
    • /
    • 2003
  • This paper proposes a novel blind adaptive algorithm for computing the weight vector of an antenna array system. The new technique utilizes a Generalized On-Off algorithm to obtain the weight vector maximizing the SINR(Signal to Interference plus Noise Ratio) of the received signal. It is observed that the proposed algorithm generates a suboptimal weight vector with a linear computational load(O(6N+8)). From the various simulations, it is confirmed that, when the signal environment becomes adverse, e.g., low Processing Gain, and/or wide angular spread. the proposed algorithm outperforms the conventional one in terms of the communication capacity by about 3 times. Applying the proposed algorithm to satellite tracking systems as well as IS2000 1X mobile communication system, we have found that both communication capacity and communication quality are significantly improved.

Closed-form Localization of a coherently distributed single source with circular array (환형배열에서 닫힌 형식을 이용한 코히어런트 분산 단일음원의 위치 추정 기법)

  • Jung, Tae-Jin;Shin, Kee-Cheol;Park, Gyu-Tae;Cho, Sung-Il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.6
    • /
    • pp.437-442
    • /
    • 2018
  • In this paper, we propose a method for estimating the position of a source in a closed form when a single source has coherently distributed property against a circular array. When a sound source reaches a sensor through multipath environments, it is seen as a distributed source and can be represented by four variables: the nominal azimuth, nominal elevation, azimuth angular spread, elevation angular spread. Therefore, it requires a lot of computation by a search method such as DSPE (Distributed Source Parameter Estimator). In this paper, we propose a method of estimating the nominal azimuth and elevation angle in a closed form using correlation function and least squares method for fast position estimation. In particular, if the source is assumed as Gaussian distribution model, the standard deviation is also estimated in a closed form. In the simulation, the validity of the proposed method is confirmed by comparing with the DSPE.

Kinetic Analysis of the Salto Side-Ward Tucked on the Balance Beam (평균대 옆공중돌기 동작의 운동역학적 분석)

  • Yeo, Hong-Chal;Chang, Jae-Kwan
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.3
    • /
    • pp.61-69
    • /
    • 2008
  • The purpose of this study is to examine the success or failure on the balance beam in element group requirements posture which is bending salto side-ward tucked through kinetic analysis. The national team players were participated. The goal was to present training methods to coaches and athletes so as to provide scientifically useful information. The results from this study were summarized as below. When the performance was successful, the features of the body's center of gravity during the side somersault motion showed to spread from the center of the balance beam and the center of the gravity moved to the direction of the body's rotation. In the spring sections - event2 and 3, when the performance was successful, up/down fluctuation became more wider and increased air time. It supported the result that the projecting variable was higher than in failure trial. In addition, the right side hip joint angles and speed, and angular velocity as jumping up for a leap were larger than in failure trial. Those variables showed the optimal conditions for a leap. By increasing the speed of the upper limb from the shoulder and the speed of the shoulder joint angular velocity, the momentum was increased. Especially the right side shoulder joint angular velocity increased dramatically because the right leg was held. As to the side somersault motion, the angular momentum of successful trial with respect to x-axis was bigger than failed trial. It indicated that the increasing angular momentum with respect to x-axis was an important factor in flying motion. Besides, as to side somersault, the appropriate proportion of angular momentum with respect to y-axis and z-axis was a key to successful trails.

Frequency translation approach for transmission beamforming in FDD wireless communication systems with basestation arrays (기지국 안테나 배열을 이용한 FDD 방식의 무선통신 시스템에서 송신 빔 형성을 위한 주파수 변환 방식)

  • ;Shawn P.Stapleton
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.5
    • /
    • pp.1-14
    • /
    • 1997
  • We consider transmission beamforming techniques for frequency-division-duplex (FDD) wireless communication systems using adaptive arrays to improve the signal quality of the array transmission link. We develop a simple effective transmission beamforming technique based on an approximated frequency tranlsation (AFT) to derive the tranmsiion beamforming weights from the uplink channel vector. This technique exploits the invariance of the short-time averaged fast fading statistics to small frequency translations. A simple approximate relationship that relates the transmission channel vector to the reception channel vector is derived. We have developed its practical alternative in which the frequency translation of the channel vector is performed at the principal angle of arrival (AOA) of the u;link synthestic angular spectrum instead of the mean AOA. To analyze the performance of the proposed methods, we consider the power loss incurred by applying the estimated channel vector instead of the true downlink channel vector. The performance is analyzed as a function of the mean AOA, the angular spread, the number of elements, frequncy difference between the uplink and the downlink, and the angle distribution. Their performance is also compared with that of the direct weight reuse method and the AOA based methods.

  • PDF

An Enhanced Approach for a Prediction Method of the Propagation Characteristics in Korean Environments at 781 MHz

  • Jung, Myoung-Won;Kim, Jong Ho;Choi, Jae Ick;Kim, Joo Seok;Kim, Kyungseok;Pack, Jeong-Ki
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.911-921
    • /
    • 2012
  • In high-speed wireless communications, an analysis of the propagation characteristics is an important process. Information on the propagation characteristics suitable for each environment significantly helps in the design of mobile communications. This paper presents the analysis results of radio propagation characteristics in outdoor environments for a new mobile wireless system at 781 MHz. To avoid the interference of Korean DTV broadcasting, we measure the channel characteristics in urban, suburban, and rural areas on Jeju Island, Republic of Korea, using a channel sounder and $4{\times}4$ antenna. The path loss (PL) measurement results differ from those of existing propagation models by more than 10 dB. To analyze the frequency characteristics for Korean propagation environments, we derive various propagation characteristic parameters: PL, delay spread, angular spread, and K-factor. Finally, we verify the validity of the measurement results by comparing them with the actual measurement results and 3D ray-tracing simulation results.

Characterization of Body Shadowing Effects on Ultra-Wideband Propagation Channel

  • Pradubphon, Apichit;Promwong, Sathaporn;Chamchoy, Monchai;Supanakoon, Pichaya;Takada, Jun-Ichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.219-222
    • /
    • 2004
  • There are several factors that disturb an Ultra-Wideband (UWB) radio propagation in an indoor environment such as path loss, shadowing and multipath fading. These factors directly affect the quality of the received signal. In this paper, we investigated the influence of the human body shadowing on UWB propagation based on measured wireless channel in an anechoic chamber. The characteristics of the UWB channel including the transmitter and the receiver antenna effects are acquired over the frequency bandwidth of 3${\sim}$11 GHz. The major factors such as the power delay profile (PDP), the angular power distribution (APD), the pulse distortion and the RMS delay spread caused by the human body shadowing are presented.

  • PDF