• 제목/요약/키워드: Angular movement

검색결과 211건 처리시간 0.026초

광학센서를 이용한 관절운동각도 측정 (Angular Displacement Measurement Using Optical Sensor)

  • 정구인;김지선;허동훈;유환동;임성환;최주현;이정환;엄광문;전재훈
    • 전기학회논문지
    • /
    • 제60권10호
    • /
    • pp.1959-1965
    • /
    • 2011
  • Measuring the movement of joint angle of human body is very important clinically. Human joint angle displacement can be used to evaluate the degree of disease and disability. Also, we can determine the rehabilitation process with angular information. Conventional methods for measuring angular displacement are many weakness. The purpose of this study is to overcome the limitations of existing equipments by using optical method. For this reason, optical sensor system was used to correlate detected light signal with joint angle. Experimental results of the applied joint model in this study showed that joint angular displacement can be measured by optical signals. The suggested method is simple, durable, small, lightweight, convenient, and cost effective.

착지 높이와 무릎관절 근육 피로가 착지 후 방향 전환 동작 시 하지관절의 움직임에 미치는 영향 (Effects of Landing Height and Knee Joint Muscle Fatigue on Movement of the Lower Extremity during Cutting After Landing)

  • 김유경;염창홍
    • 한국운동역학회지
    • /
    • 제25권3호
    • /
    • pp.311-322
    • /
    • 2015
  • Objective : The purpose of this study was to investigate the effects of landing height and knee joint muscle fatigue on the movement of the lower extremity during cutting after landing. Method : Subjects included 29 adults (age: $20.83{\pm}1.56years$, height: $172.42{\pm}9.51cm$, weight: $65.07{\pm}10.18kg$). The subjects were asked to stand on their dominant lower limb on jump stands that were 30 and 40 cm in height and jump from each stand to land with the dominant lower limb on a force plate making a side step cutting move at a $45^{\circ}$ angle with the non-dominant lower limb. The fatigue level at 30% of the knee extension peak torque using an isokinetic dynamometer. Results : The results showed that the difference of landing height increased maximum range of motion and angular velocity of hip, knee, and ankle joints in the sagittal plane, and in the angular velocity of motion of the hip joint in the sagittal plane. The maximum range of motion of the knee joint in the sagittal plane and the frontal plane decreased on landing from both heights after the fatigue exercise. The angular velocity of the hip joint in the sagittal plane, and the maximum range of motion of the hip joint in the transverse plane decreased for both landing heights after the fatigue exercise. The angular velocity of the hip joint in the frontal plane decreased for the 30 cm landing height after the fatigue exercise. On the other hand, the angular velocity and maximum range of motion of the ankle joint in the sagittal plane for both landing heights, and the angular velocity and maximum range of motion of the ankle joint in the frontal plane increased on landing from the 40 cm height after the fatigue exercise. Conclusion : Different landing heights of 30 and 40 cm and 30% fatigue of peak torque of knee extensor found a forefoot and stiff landing strategy, when cutting after landing. These results might be due to decline in the shock absorption capability of the knee joint and the movement capability related to cutting while increasing the contribution of the ankle joint, which may cause increased ankle joint injuries.

농구 3득점 점프슛 동작의 운동역학적 분석 (Kinetic Analysis of Three-Point Jump Shot in Basketball)

  • 이동진;정익수
    • 한국운동역학회지
    • /
    • 제20권1호
    • /
    • pp.49-55
    • /
    • 2010
  • The purpose of the study was to analyze kinetic factors required to the three-point jump shot of the basketball games through 3-D analysis and ground reaction force(GRF) analysis. Six university male players participated in this study. The results of the study were showed that (1) resultant velocity in the center of mass(COM) was $0.84{\pm}0.27\;m/s$ since a player didn't shot a ball in the highest peak and shot ball at the moment of going up forward and vertical movement. Therefore, it is necessary to find a proper timing to shot a ball; (2) the angular velocity was largely increased in upper arm and fore arm out of the upper-limb segments and the hands had the largest angular velocity since the body is in a fixed situation and angular speed is rapidly increased by the wrist' snap with the rapid movement of upper arm and forearm at the time of release a ball; (3) it is judged that a player can shot a ball at the accurate and high release point when the player collects power vertically to the maximum by keeping GRF to the right and the rear in a proper way and by keeping the body's balance so that a large power may not be dispersed.

인공안구 구현을 위한 병렬 구조의 3자유도 회전 로봇 개발 (Development of 3 DOF Parallel Spherical Robot for Artificial Eyeball)

  • 박성령;양승한
    • 한국정밀공학회지
    • /
    • 제31권6호
    • /
    • pp.535-541
    • /
    • 2014
  • In this research, three degree-of-freedom parallel spherical robot is developed for an artificial eyeball. The proposed system is comprised of a moving and a base plate, three prismatic actuators, and a ball joint for an angular movement of the moving plate. The vector analysis is employed to investigate the relationship between positions of the actuators and a pose of the moving plate. The required ranges for every actuators are calculated using the derived inverse kinematics in regard to the combination of two different levels for the size of the system component. Then the size of every components is determined from the analyzed trend. PI controller is employed for the position control of the moving plate. Finally the proposed system is verified using an arbitrary path of the angular movement.

Swimming Characteristics of the Black Porgy Acanthopagrus schlegeli in the Towing Cod-End of a Trawl

  • Kim Yong-Hae;Jang Chi Yeong
    • Fisheries and Aquatic Sciences
    • /
    • 제8권3호
    • /
    • pp.177-181
    • /
    • 2005
  • Fishing selectivity is determined by the level of voluntary escaping behavior in accordance with decision-making based on the relationship between fish size and mesh size. This study examined movement during the swimming behavior of black porgy in a trawl's towing cod-end and analyzed the movement components such as swimming speed, angular velocity of turning, and distance to the net over time. Most of the observed fish exhibited an optomotor response, maintaining position and swimming speed without changing direction. Others exhibited erratic or 'panic' behavior with sudden changes in swimming speed and direction. The latter behavior involved very irregular and aperiodic variations in swimming speed and angular velocity, termed 'chaotic behavior.' Thus, the results of this study can be applied to a chaotic behavior model as a time series of swimming movements in the towing cod-end for the fishing selectivity.

지보굴착에 따르는 인접건물의 손상위험도 평가사례: 설계단계 (A Case Study of Building Damage Risk Assessment Due to the Strutted Excavation: Design Aspects)

  • 이선재;송태원;이윤상;송영한;김재권
    • 한국지반공학회논문집
    • /
    • 제21권10호
    • /
    • pp.99-112
    • /
    • 2005
  • 도심지에서의 지반굴착은 배면지반의 변위와 그에 따르는 건물의 손상을 유발시킨다. 굴착에 의한 지반변위의 예측과 굴착면 주변에 위치한 건물의 손상 위험도 평가는 설계단계에서 필수적인 요소이다. 본 논문에서는 기존의 굴착에 의한 지반변위 예측기법인 Peck의 방법과 Bowles의 방법을 조합하여 지보굴착에 따르는 배면지반 변위예측방법을 제안하였다. 또한, 배면지반의 Green-field 뒤틈각과 수평변형률을 이용한 인접건물 손상위험도 평가기법을 제안하였다. 이 기법은 싱가폴에서 시공중인 대규모 지반굴착공사의 설계에 성공적으로 적용되었다.

핸드스프링 몸펴 앞공중1회 비틀기 동작의 소요시간 및 각운동량 분석 (An analysis angular movement and performance time during handspring salto forward stretched)

  • 권오석;윤양진;서국웅
    • 한국운동역학회지
    • /
    • 제12권2호
    • /
    • pp.229-244
    • /
    • 2002
  • 남자 기계체조 국가대표 선수 3명과 대학선수 3명을 대상으로 핸드스프링 몸펴 앞공중1회 비틀기 동작을 구간 및 국면별로 분석하고 동작의 숙련도에 따라 역학적 변인이 집단 간 어떠한 차이를 보이는지를 구명하기 위하여 Kwon3D 프로그램을 활용하여 분석한 결과 다음과 같은 결론을 얻었다. 시간요인에서 보폭을 크게 딛는 것이 손을 빠르게 지지 할 수 있고, 핸드스프링 체공시간은 짧게 하여야 발구르기의 압력을 높여 비틀기동작에서 체공 소요 시간이 길어지므로 비틀기 수행의 완성도를 높일 수 있는 것으로 나타났다. 각운동량 요인에서 기술수행 시 전체적으로 좌우(X)축에 대한 각운동량이 전후(Y)축과 수직(Z)축에 대한 각운동량에 비해 더 큰 값을 보였다. 좌우 축 각운동량은 지면에서 이지되어 동작을 수행하는 핸드스프링회전과 앞공중1회 비틀기에서 숙련자가 상대적으로 더 큰 각운동량 보이는 것으로 나타났다.

아이스하키 스위프 샷(Sweep shot) 동작의 3차원 운동학적 분석 (Three dimensional Kinematic Analysis of Sweep Shot in Ice Hockey)

  • 최지영;문곤성
    • 한국운동역학회지
    • /
    • 제16권4호
    • /
    • pp.49-59
    • /
    • 2006
  • The purpose of this study was to investigate the relations between the segments of the body, the three dimensional anatomical angle according to sweep shot in ice hockey. The subjects of this study were five professional ice hockey players. The reflective makers were attached on anatomical boundary line of body. For the movement analysis three dimensional cinematographical method(APAS) was used and for the calculation of the kinematic variables a self developed program was used with the LabVIEW 6.1 graphical programming(Johnson, 1999) program. By using Eular's equations the three dimensional anatomical Cardan angles of the joint and ice hockey stick were defined. 1. In three dimensional linear velocity of blade the Y axis showed maximum linear velocity almost impact, the X axis(horizontal direction) and the Z axis(vertical direction) maximum linear velocity of blade did not show at impact but after impact this will resulted influence upon hitting puck. 2. The resultant linear velocity of each segment of right arm showed maximum resultant linear velocity at impact. It could be suggest that the right arm swing patterns is kind of push-like movement. therefore the upper arm is the most important role in the right arm swing. 3. The three dimensional anatomical angular displacement of trunk in flexion-extension showed flexion all around the wrist shot. The angular displacement of trunk in internal-external rotation showed internal rotation angle at the backswing top and and increased the angle after the impact. while there is no significant adduction-abduction. 4. The three dimensional anatomical angular displacement of trunk showed most important role in wrist shot. and is follwed by shoulder joints, in addition the movement of elbow/wrist joints showed least to the shot. this study result showed upperlimb of left is more important role than upperlimb of right.

Suggestion of New Terminology and Classification of the Hand Techniques by Angular Momentum in the Taekwondo Poomsae

  • Yoo, Si-Hyun;Jung, Kuk-Hyun;Ryu, Ji-Seon
    • 한국운동역학회지
    • /
    • 제26권1호
    • /
    • pp.51-69
    • /
    • 2016
  • Objective: The purpose of this study is to suggest new terminology for the ninety-five hand techniques based on the significance of their angular momentum, determined by analyzing each technique's influence or impact on the compartmentalized angular momentum of the trunk, upper arm, and forearm in the Taekwondo Poomsae. Method: An athlete who won the 2014 World Taekwondo Poomsae championship was selected and agreed to participate in the data collection phase of our investigation. The video data was collected using eight infrared cameras (Oqus 300, Qualysis, Sweden) and the Qualisys Track Manager software (Qualisys, Sweden). The angular momentum of each movement was then calculated using the Matlab R2009a software (The Mathworks, Inc., USA). Results: The classification of the ninety-five hand techniques in the Taekwondo Poomsae based on the significance of each segment's momentum is as follows. Makgi (blocking) is classified into fourteen categories, jireugi (punching) is classified into three categories, chigi (hitting) was classified into six categories, palgupchigi (elbow hitting) was classified into four categories, and jjireugi (thrusting) was classified two categories. Conclusion: This study offers a new approach, based on a biomechanical method, to the classification of the hand techniques that reflect kinesthetic motions in the Taekwondo Poomsae.

선체의 횡요와 어군탐지기의 탐지기능범위에 관하여 (Effects of Ship`s Roll Motion on the Detectable Area of Echo Sounder)

  • 박중희;신형일;이대재
    • 수산해양기술연구
    • /
    • 제19권2호
    • /
    • pp.93-98
    • /
    • 1983
  • When detecting underwater targets using echo sounder, the echo signals varies with the angular displacement of the transducer due to ship's motion. Then, the effect of the angular which effects the capability of the echo sounder must be investigated in relation to the detection of fish concentration, particularly, the abundance estimation of fish. In this pater, as the basic research to investigate the effect of the ship's motion when estimating the fish stocks by acoustic methods, the authors was theoritically considered the variations in the values of the two way directivity function of transducer in the direction of the targets which caused by the angular motion of transducer. Here, the effects of the movement of target and ship's running are neglected. At the same time, the data was applied to estimate the angular shift of the detectable area of echo sounder due to transducer displacement. From the results analyzed, we found that the angular shift of the detectable area due to ship's motion increases both as the roll angle increases and as the beamwidth becomes narrower, varies with the depth.

  • PDF