• Title/Summary/Keyword: Angular displacements

Search Result 45, Processing Time 0.031 seconds

Vibration Response of a Human Carpal Muscle (인체 수관절 근육의 진동 응답)

  • Chun, Han-Yong;Kim, Jin-Oh;Park, Kwang-Hun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.1
    • /
    • pp.31-40
    • /
    • 2011
  • This paper examines the dynamic characteristics of a human carpal muscle through theoretical analysis and experiment. The carpal muscle was modeled as a 1-DOF vibration system and vibration response due to a ramp function force was calculated. The electromyogram signal corresponding to the muscle excitation force was measured, and the excitation force function of an envelope curve from the electromyogram signal was extracted. The ramp input function of electrical stimulation to the carpal muscle was applied by using a device for functional electrical stimulation, and the angular displacements corresponding to steady state response were measured. Theoretical calculations of the vibration response displacements were compared with the experimental results of the angular displacements, and have shown a good agreement with the result that is linearly proportional to the excitation force magnitude. As a result, the relationship between the input current of the electrical stimulation and the excitation force magnitude was inferred. The result was shown that it can be applied to develop rehabilitation training devices.

The Effect of a Wedged Rocker Sole on Ankle Joints during Gait (보행에서 외측 경사진 굽은 밑창이 발목 운동에 미치는 영향 분석)

  • Kwon, Sung-Hyuk;Kim, Choong-Sik;Kim, Hee-Jin;Ryu, Tae-Beum;Chung, Min-Geun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.93-101
    • /
    • 2008
  • Wedged soles and rocker soles are widespread shoe designs used to prevent the disorders and reduce the pain of the lower extremity caused by arthritis or diabetic feet. In this study, the effect of a shoe with a laterally wedged sole and a rocker sole simultaneously was analyzed on the kinematics and kinetics of the ankle joint during normal walking. Eight male participants without a history of lower extremity disorders were recruited. Each participant performed twenty walking cycles for each of three walking conditions: bare foot, wearing normal shoes and wearing shoes with laterally wedged rocker soles. The differences between the three walking conditions were statistically investigated including spatio-temporal variables, angular displacements, joint moments and ground reaction forces. The results showed that the laterally wedged rocker sole decreased the sagittal variation of angular displacements as well as the frontal/sagittal average moment on the ankle joints compared to the flat sole. In addition, the rate of angular displacements and loading decreased during the heel contact phase.

A comparative study between stress concentration factor of the infinite plate with elliptic hole and presuure coefficient of the potential flow around elliptic cylinder (추원공을 가진 무한평판의 응력집중계수와 추원주를 가진 Potential Flow 의 응력계수와 비교연구)

  • ;;Yoon, Kab Young
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.5 no.4
    • /
    • pp.354-361
    • /
    • 1981
  • This study aims to compare stress concentratior factors in a loaded elastic body of the infinite plate with pressure coefficients of a fluid in the potential flow. First in view of hydrodynamics, when a single elliptic cylinder in the form of a bluff body stands in the potential flow, the pressure distribution(doefficient, C$\_$p/around the elliptic cylicder which is changed according to the position(angular displacements)is theoretically analyzed and calulated; secondly, in view of theory of elasticity, when an eliptic hole which is made on a flat plate gets tension, the stress distribution(factor) around the elliptic hole which is changed according to the position(angular displacements )is theoretically(K$\_$t/) and experimentally (K$\_$e/) measured; and finally. The results are compard and examined.

Dynamic Stability Analysis of a Spinning Disk with Angular Acceleration by Using the Uncoupled Governing Equations (비연성된 지배방정식을 이용한 각가속도를 갖는 회전원판의 동적 안정성 해석)

  • Choe, Tae-Yeong;Jeong, Jin-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1363-1370
    • /
    • 2000
  • Dynamic stability of a flexible spinning disk with angular acceleration is considered. To avoid the coupling between the in-plane and out-of-plane displacements, the linearized strain-displacement relations are used in the Kirchhoff plate theory. The uncoupled governing equations are derived by using Hamilton's principle with considering the angular acceleration. Numerical tests show that existence of the angular acceleration makes a spinning disk dynamically unstable.

Kinematic Characteristics of Walking-Assistance Robot (보행보조 로봇의 운동학적 특성)

  • Bae, Ha-Suk;Kim, Jin-Oh;Chun, Han-Yong;Park, Kwang-Hun;Lee, Kyung-Whan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.5
    • /
    • pp.503-515
    • /
    • 2011
  • We developed a walking-assistance robot for walking rehabilitation and assessed the kinematic characteristics of a prototype. The walking-assistance robot is composed of hip, knee, and ankle joints, and each joint is driven by a motor with a decelerator. The equations of angular displacement while walking were derived by theoretically analyzing human locomotion, and the calculated angular displacements were then applied to the robot controller. The output angular displacement of each joint was measured and compared with its input angular displacement in walking experiments on a treadmill at various walking speeds and strides. The differences between the input and output angular displacements are 5.22% for the hip and 2.97% for the knee joints, and it has been confirmed that the walking-assistance robot works well.

Dynamic Analysis of a Flexible Spinning Disk with Angular Acceleration Considering Nonlinearity (비선형성을 고려한 각가속도를 갖는 유연 회전원판의 동적 해석)

  • 정진태;정두한
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.806-812
    • /
    • 1999
  • Dynamic behaviors are analyzed for a flexble spinning disk with angular acceleration, considering geometric nonlinearity. Based upon the Kirchhoff plate theory and the von Karman strain theory, the nonlinear governing equations are derived which are coupled equations with the in-plane and out-of-planedisplacements. The governing equations are discretized by using the Galerkin approximation. With the discretized nonlinear equations, the time responses are computed by using the generalized-$\alpha$ method and the Newton-Raphson method. The analysis shows that the existence of angular acceleration increases the displacements of the spinning disk and makes the disk unstable.

  • PDF

In-Plane Natural Vibration Analysis of a Rotating Annular Disk (회전하는 환상 디스크의 면내 고유진동 해석)

  • Kim, Chang-Boo;Song, Seung-Gwan
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1379-1388
    • /
    • 2008
  • In this paper, we present the equations of motion by which the natural vibration of a rotating annular disk can be accurately analyzed. These equations are derived from the theory of finite deformation and the principle of virtual work. The radial displacements of annular disk which is rotating at constant angular velocity are determined by non-linear equations formulated using 1-dimensional finite elements in radial direction. The equations of the in-plane vibrations at disturbed state are also formulated using 1-dimensional finite elements in radial direction along the number of nodal diameters. They are expressed as in functions of the radial displacements at the steady state and the disturbed displacements about the steady state. In-plane static deformation modes of the annular disk are used as the interpolation functions of 1-dimensional finite elements in radial direction. The natural vibrations of an annular disk with different boundary conditions are analyzed by using the presented model and the 3-dimensional finite element model to verify accuracy of the presented equations of motion. Its results are compared and discussed.

  • PDF

Correlation between sway magnitude and joint reaction force during postural balance control (자세 균형 제어 시 동요의 강도와 관절 반발력의 상관관계)

  • 서민좌;조원학;최현기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1160-1165
    • /
    • 2004
  • The purpose of this study was to calculate three dimensional angular displacements, moments and joint reaction forces of the ankle joint during the waist pulling, and to assess the ankle joint reaction forces according to different perturbation modes and different levels of perturbation magnitude. Ankle joint model was assumed 3-D ball and socket joint which is capable of three rotational movements. We used 6 cameras, force plate and waist pulling system. Two different waist pulling systems were adopted for forward sway with three magnitudes each. From motion data and ground reaction forces, we could calculate 3-D angular displacements, moments and joint reaction forces during the recovery of postural balance control. From the experiment using falling mass perturbation, joint moments were larger than those from the experiment using air cylinder pulling system with milder perturbation. However, JRF were similar nevertheless the difference in joint moment. From this finding, we could conjecture that the human body employs different strategies to protect joints by decreasing joint reaction forces, like using the joint movement of flexion or extension or compensating joint reaction force with surrounding soft tissues. Therefore, biomechanical analysis of human ankle joint presented in this study is considered useful for understanding balance control and ankle injury mechanism.

  • PDF

Dynamic analysis of railway vehicle by using track coordinates (트랙 좌표계를 이용한 철도차량 운동 해석)

  • Kang, Ju-Seok
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.818-823
    • /
    • 2011
  • 6-generalized coordinates of absolute translational displacements and angular displacements measured at Cartesian coordinates system fixed at the ground has been used to describe general dynamic behavior of a rigid body in mechanical systems. However, track coordinates system moving with the centerline of the track can be used to develop dynamic formulations for railway vehicle. It is easy to impose the constraints of track coordinates by the virtue of track coordinates system moving with track centerline. In this analysis, dynamic equations of railway vehicle by using track coordinates system is derived and the simulation results are presented.

  • PDF