• 제목/요약/키워드: Angular deviation

검색결과 95건 처리시간 0.022초

악교정 수술을 위한 한국 성인 정상교합자의 경조직 기준치 (CEPHALOMETRIC NORMS OF THE HARD TISSUES OF KOREAN FOR ORTHOGNATHIC SURGERY)

  • 김경호;최광철;김형곤;박광호
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제27권3호
    • /
    • pp.221-230
    • /
    • 2001
  • This study was performed to evaluate hard tissue cephalometric norms for Korean adults which can be implemented in surgical orthodontic treatment planning using selected horizontal reference plane especially for Koreans (Male: $SN-7.5^{\circ}$, Female: $SN-9.0^{\circ}$) and a simplified analytical method. 70 males and 70 females consisting of freshmen of Yonsei University from 1996 to 1997 and students from the Dental College of Yonsei University were chosen according to clinical examination and cephalometric analysis. The samples had normal profiles, normal anteroposterior skeletal relationship(ANB angle of $0^{\circ}$ to $4^{\circ}$ and Wits appraisal of -4.0mm to 0mm), and Class I molar and canine relationship. They had no missing or supernumerary teeth and had no experience of orthodontic or prosthetic treatment. After the selection of 23 landmarks and the construction of horizontal and vertical reference lines, 22 skeletal and 12 dental measurements were taken. These consisted of vertical and horizontal linear measurements and angular measurements. The results were as follows. 1. Mean and standard deviation of the measurements were calculated for males and females. 2. Most of the skeletal vertical measurements, and maxillary and mandibular length were bigger in males than females. Whereas anterior facial height ratio(N-ANS/ANS-Me) as well as maxillary and mandibular antero-posterior position in relation to the vertical reference line(N-perpendicular) showed no signigicant difference between sexes. 3. Maxillary and mandibular dental antero-posterior position in relation to the vertical reference line(N-perpendicular) showed no significant difference between sexes. 4. The upper incisor show(U1-Stms) was $2.1{\pm}1.7mm$ in males and $3.3{\pm}1.7mm$ in females. In this study, hard tissue cephalometric norms of Korean adults for orthognathic surgery were obtained.

  • PDF

Adjustable Ghajar Guide Technique for Accurate Placement of Ventricular Catheters : A Pilot Study

  • Yoon, Sang-Youl;Kwak, Youngseok;Park, Jaechan
    • Journal of Korean Neurosurgical Society
    • /
    • 제60권5호
    • /
    • pp.604-609
    • /
    • 2017
  • Objective : An adjustable Ghajar guide is presented to improve the accuracy of the original Ghajar guide technique. The accuracy of the adjustable Ghajar guide technique is also investigated. Methods : The coronal adjustment angle from the orthogonal catheter trajectory at Kocher's point is determined based on coronal head images using an electronic picture archiving and communication system. For the adjustable Ghajar guide, a protractor is mounted on a C-shaped basal plate that is placed in contact with the margin of a burrhole, keeping the central $0^{\circ}$ line of the protractor orthogonal to the calvarial surface. A catheter guide, which is moved along the protractor and fixed at the pre-determined adjustment angle, is then used to guide the ventricular catheter into the frontal horn adjacent to the foramen of Monro. The adjustable Ghajar guide technique was applied to 20 patients, while a freehand technique based on the surface anatomy of the head was applied to another 47 patients. The accuracy of the ventricular catheter placement was then evaluated using postoperative computed tomography scans. Results : For the adjustable Ghajar guide technique (AGT) patients, the bicaudate index ranged from 0.23 to 0.33 ($mean{\pm}standard$ deviation [SD] : $0.27{\pm}0.03$) and the adjustment angle ranged from $0^{\circ}$ to $10^{\circ}$ ($mean{\pm}SD:5.2^{\circ}{\pm}3.2^{\circ}$). All the AGT patients experienced successful cerebrospinal fluid diversion with only one pass of the catheter. Optimal placement of the ventricular catheter in the ipsilateral frontal horn approximating the foramen of Monro (grade 1) was achieved in 19 patients (95.0%), while a suboptimal trajectory into a lateral corner of the frontal horn passing along a lateral wall of the frontal horn (grade 3) occurred in 1 patient (5.0%). Thus, the AGT patients experienced a significantly higher incidence of optimal catheter placement than the freehand catheterized patients (95.0% vs. 68.3%, p=0.024). Moreover, none of the AGT patients experienced any tract hemorrhages along the catheter or procedure-related complications. Conclusion : The proposed adjustable Ghajar guide technique, using angular adjustment in the coronal plane from the orthogonal trajectory at Kocher's point, facilitates accurate freehand placement of a ventricular catheter for hydrocephalic patients.

웨어러블 소프트 센서 장갑의 손가락 관절 관절가동범위 측정에 대한 신뢰도 분석 (Reliability Analysis of Finger Joint Range of Motion Measurements in Wearable Soft Sensor Gloves)

  • 김은경;김진홍;김유리;홍예지;이강표;전은혜;배준범;김수인;이상이
    • PNF and Movement
    • /
    • 제21권2호
    • /
    • pp.171-183
    • /
    • 2023
  • Purpose: The purpose of this study was to compare universal goniometry (UG), which is commonly used in clinical practice to measure the range of motion (ROM) of finger joints with a wearable soft sensor glove, and to analyze the reliability to determine its usefulness. Methods: Ten healthy adults (6 males, 4 females) participated in this study. The metacarpophalangeal joint (MCP), interphalangeal joint (IP), and proximal interphalangeal joint (PIP) of both hands were measured using UG and Mollisen HAND soft sensor gloves during active flexion, according to the American Society for Hand Therapists' measurement criteria. Measurements were taken in triplicate and averaged. The mean and standard deviation of the two methods were calculated, and the 95% limits of agreement (LOA) of the measurements were calculated using the intraclass correlation coefficient (ICC) and Bland-Altman plot to examine the reliability and discrepancies between the measurements. Results: The results of the mean values of the flexion angles for the active range of motion (AROM) of the finger joints showed large angular differences in the finger joints, except for the MCP of the thumb. In the inter-rater reliability analysis according to the measurement method, the ICC (2, 1) value showed a low level close to 0, and the mean difference by the Bland-Altman plot showed a value greater than 0, showing a pattern of discrepancy. The 95% LOA had a wide range of differences. Conclusion: This study is a preliminary study investigating the usefulness of the soft sensor glove, and the reliability analysis showed a low level of reliability and inconsistency. However, if future studies can overcome the limitations of this study and the technical problems of the soft sensor glove in the development stage, it is suggested that the measurement instrument can show more accurate measurement and higher reliability when measuring ROM with UG.

퍼스널 모빌리티(Personal Mobility)의 주행안전성 평가지표 연구 (A Study on Driving Safety Evaluation Criteria of Personal Mobility)

  • 박범진;노창균;김지수
    • 한국ITS학회 논문지
    • /
    • 제17권5호
    • /
    • pp.1-13
    • /
    • 2018
  • 세그웨이를 시작으로 다양한 형태의 퍼스널 모빌리티(PM)가 판매 및 이용되고 있다. PM이 갖춘 편의성으로 인해 급격히 보급되고 있으며, 이와 함께 안전사고도 급증하고 있는 추세이다. 이와 같은 추세에 발맞추어 PM과 관련된 다양한 연구 및 제도가 마련되고 있다. 그러나 안전도 향상을 위한 방안으로는 제품 자체의 기능적 인증분야로 한정되어 있으며, 탑승자의 주행 안전성에 대한 평가기준 및 지표 마련은 이루어진 바 없다. 본 논문에서는 PM의 주행 안전성 평가에 적용 가능한 지표를 검토하였으며, 도출된 지표를 이용하여 3종의 PM과 보행에 대해 안전성 평가를 수행하여 결과를 제시하였다. 타 분야에서 활용되고 있는 지표 중 최종 선정한 지표는 COG(Center of the gravity)와 SM(Stability Metric)이다. COG는 무게중심이 중력 방향에서 벗어난 정도를 평가하는 지표이며 SM은 PM이 움직일 때 발생되는 힘을 내부의 힘, 각운동량, 지면반발력으로 보고 정규화한 값으로 움직이지 않을 때는 0이 되며 음의 값은 전복됨을 의미하므로 PM의 주행안전성 평가에 활용 가능하다. COG의 경우 평균값과 분산값을 기준으로 안전도를 평가하여 결론을 제시하였다. 3종의 PM 중 Scooter의 경우 탑승형태를 입식과 좌식으로 구분하여 시행하였으며, 그 결과 COG의 움직임으로 평가하였을 경우 wheel chair가 평균 6.54mm로 가장 안전하며 kickboard가 가장 불안전한 것으로 분석되었다. SM분석 결과, wheel chair가 가장 안전하며, 좌식 탑승의 형태가 입식보다 안전한 것으로 평가되었다. 이와 같은 분석 방법을 이용하여 향후 보다 다양한 제품군에 대한 주행안전성 평가가 필요할 것으로 판단되며, 운전자 중심 뿐만 아니라 기기 자체에 대한 주행안전성 평가가 함께 이루어져야 할 것이다.

유도 공중회전낙법의 COG변인 분석 (A COG Variable Analysis of Air-rolling-breakfall in Judo)

  • 김의환;정재욱;김성섭
    • 한국운동역학회지
    • /
    • 제15권3호
    • /
    • pp.117-132
    • /
    • 2005
  • It was to study a following research of "A Kinematic Analysis of Air-rolling-breakfall in Judo". The purpose of this study was to analyze the Center of Gravity(COG) variables when performing Air-rolling-breakfall motion, while passing forward over(PFO) to the vertical-hurdles(2m height, take off board 1m height) in judo. Subjects were four males of Y. University squad, who were trainees of the demonstration exhibition team, representatives of national level judoists and were filmed by four 5-VHS 16mm video cameras(60field/sec.) through the three dimensional film analysis methods.COG variable were anterior-posterior directional COG and linear velocity of COG, vertical directional COG and linear velocity of COG. The data collections of this study were digitized by KWON3D program computed The data were standardized using cubic spline interpolation based by calculating the mean values and the standard deviation calculated for each variables. When performing the Air-rolling-breakfall, from the data analysis and discussions, the conclusions were as follows : 1. Anterior-posterior directional COG(APD-COG) when performing Air-rolling-breakfall motion, while PFO over to the vertical-hurdles(2m height) in judo. The range of APD-COG by forward was $0.31{\sim}0.41m$ in take-off position(event 1), $1.20{\sim}1.33m$ in the air-top position(event 2), $2.12{\sim}2.30m$ in the touch-down position(event 3), gradually and $2.14{\sim}2.32m$ in safety breakfall position(event 4), respectively. 2 The linear velocity of APD-COG was $1.03{\sim}2.14m/sec$. in take-off position(event 1), $1.97{\sim}2.22m/sec$. gradually in the air-top position(event 2), $1.05{\sim}1.32m/sec$. in the touch-down position (event 3), gradual decrease and $0.91{\sim}1.23m/sec$. in the safety breakfall position(event 4), respectively. 3. The vertical directional COG(VD-COG) when performing Air-rolling-breakfall motion, while PFO to the vertical-hurdles(2m height) in judo. The range of VD-COG toward upward from mat was $1.35{\sim}1.46m$ in take-off position(event 1), the highest $2.07{\sim}2.23m$ in the air-top position(event 2), and after rapid decrease $0.3{\sim}0.58m$ in the touch-down position(event 3), gradual decrease $0.22{\sim}0.50m$ in safety breakfall position(event 4), respectively. 4. The linear velocity of VlJ.COG was $1.60{\sim}1.87m/sec$. in take-off position(event 1), $0.03{\sim}0.08m/sec$. gradually in the air-top position(event 2), $-4.37{\sim}\;-4.76m/sec$. gradual decrease in the touch-down position(event 3), gradual decrease and -4.40${\sim}\;-4.77m/sec$. in safety breakfall position(event 4), respectively. When performing Air-rolling-breakfall showed parabolic movement from take-off position to air-top position, and after showed vertical fall movement from air-top position to safety breakfall. In conclusion, Ukemi(breakfall) is safety fall method Therefore, actions need for performing safety fall movement, that decrease and minimize shock and impact during Air-rolling-breakfall from take-off board action to air-top position must be maximize of angular momentum, and after must be minimize in touch-down position and safety breakfall position.