• Title/Summary/Keyword: Angular deformation

Search Result 212, Processing Time 0.034 seconds

Microstructures and Mechanical Behavior of 2024 Al Alloys Deformed by Equal Channel Angular Pressing (2024 Al 합금의 ECAP 공정에 따른 미세조직 변화와 강도특성)

  • Kim, Seon-Hwa;Choi, Yong-Lak
    • Korean Journal of Materials Research
    • /
    • v.16 no.1
    • /
    • pp.68-74
    • /
    • 2006
  • 2024 Al alloys were severely deformed by equal channel angular pressing(ECAP) to obtain an ultrafine grain structure. The more deformation amount increased, the more grain size decreased. Most of the grain structure were changed from elongated to equiaxed shape with increasing pass number. The morphology of S' phases was also changed from rod-type to spherical type. The grain size of 6 passed specimen was 100 to 200 nm, and the size of S' phases was about 10 nm in the microstructure. XRD measurements have revealed that the texture formed by plastic deformation disappeared in the 6 passed specimen. SP test results described that the start of crack propagation occurred at the transition zone between plastic bending and membrane stretching because of small elongation. The maximum strength of ECA pressed specimen increased 1.9 GPa to 2.9 GPa with increasing pass number.

Densification and Conolidation of Powders by Equal Channel Angular Pressing

  • Yoon, Seung-Chae;Hong, Sun-Ig;Hong, Sun-Hyung;Kim, Hyoung-Seop
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.978-979
    • /
    • 2006
  • In this study, bottom-up type powder processing and top-down type SPD (severe plastic deformation) approaches were combined in order to achieve both full density and grain refinement of metallic powders with least grain growth. ECAP (Equal channel angular pressing) was used for the powder consolidation. We investigated the consolidation, plastic deformation and microstructure evolution behavior of the metallic powders during ECAP using an experimental method. It was found that high mechanical strength could be achieved effectively as a result of the well bonded powder contact surface during ECAP process of gas atomized Al-Si powders.

  • PDF

Effects of Root Gap on Residual Stresses and Deformation in the Multi-Pass Weld of Thick Plates for Steel Bridge (교량용 후판 다층용접시 잔류응력과 변형에 미치는 루트간격의 영향)

  • 장경복;김하근;강성수
    • Journal of Welding and Joining
    • /
    • v.17 no.1
    • /
    • pp.88-96
    • /
    • 1999
  • The effects of root gap on welding residual stress and deformation are dealt with the multi-pass weldment with three kinds(0, 6, 30mm) of root gap by F.E.M common code, and then compared with experiment data. In this analysis, an 100% ramp heat input model was used to avoid numerical convergence problem due to an instantaneous increase in temperature near the fusion zone, and the effect of a moving arc in a two dimensional plane was also included. During the analysis, a small time increment was applied in a period with instantaneous temperature fluctuation while a large time increment was used in the rest period. The residual stress is distributed as symmetric types and maximum value is also equivalent when the weldment with 0mm and 6mm root gap is welded. In the case of 30mm root gap welding, the distribution of the residual stress extends over a wide range as asymmetric types due to the built-up weld, and most of the residual stress is biased in the side of a built-up weld part. In case of 0mm gap welding and 6mm gap welding, a little angular distortion occurs, but the level of deformation is small. When the weldment with 30mm root gap is welded, the angular deformation of the asymmetric types, however, occurs larger than the other specimens. The experimental and the analytic results show good coincidence and indicate that the welding residual stress and deformation distribution of 30 mm root gap specimen may be asymmetric and the amplitude is larger than those of root gap specimen under standard.

  • PDF

Finite Element Analysis of Deformation Behavior During ECAP for an Aluminum Alloy Composite Model containing a SiC Particle and Porosities (강화상과 기공이 포함된 금속기지 복합재 모델의 ECAP 거동에 대한 유한요소해석)

  • Lee, Sung-Chul;Han, Sang-Yul;Kim, Ki-Tae;Hwang, Sang-Moo;Huh, Lyun-Min;Chung, Hyung-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.739-746
    • /
    • 2004
  • The plastic deformation behavior of an aluminum alloy containing a particle and porosities was investigated at room temperature during equal channel angular pressing (ECAP). Finite element analysis by using ABAQUS shows that ECAP is a useful tool for eliminating residual porosity in the specimen, and more effective under friction condition. The simulation, however, shows considerably low density distributions for matrix near a particle at which many defects may occur during severe deformation. Finite element results of effective strains and deformed shapes for matrix with a particle were compared with theoretical calculations under simple shear stress. Also, based on the distribution of the maximum principal stress in the specimen, Weibull fracture probability was obtained for particle sizes and particle-coating layer materials. The probability was useful to predict the trend of more susceptible failure of a brittle coating layer than a particle without an interphase in metal matrix composites.

Plastic Deformation and Microstructural Evolution during ECAP Using a Dislocation Cell Related Microstructure-Based Constitutive Model (전위쎌에 기초한 미세조직 구성모델을 이용한 ECAP 공정 시 소성변형과 미세조직의 진화)

  • Yoon, S.C.;Baik, S.C.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.15 no.6 s.87
    • /
    • pp.441-444
    • /
    • 2006
  • The deformation behavior of copper during equal channel angular pressing(ECAP) was calculated using a three-dimensional version of a constitutive model based on the dislocation density evolution. Finite element simulations of the variation of the dislocation density and the dislocation cell size with the number of ECAP passes are reported. The calculated stress, strain and cell size are compared with the experimental data for Cu deformed by ECAP in a modified Route C regime. The results of FEM analysis were found to be in good agreement with the experiments. After a rapid initial decrease down to about 200nm in the first ECAP pass, the average cell size was found to change little with further passes. Similarly, the strength increased steeply after the first pass, but tended to saturate with further pressings. The FEM simulations also showed strain non-uniformities and the dependence of the resulting strength on the location within the workpiece.

Effect of Subsequent Annealing Temperature on Dynamic Deformation and Fracture Behavior of Submicrocrystalline Al-4.4%Mg Alloy via Equal-Channel Angular Pressing (ECAP 가공된 초미세 결정립 Al-4.4%Mg 합금의 동적 변형 및 파괴거동에 미치는 후-열처리 온도의 영향)

  • Kim, Y.G.;Ko, Y.G.;Shin, D.H.;Lee, C.S.;Lee, S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.427-430
    • /
    • 2008
  • The influence of subsequent annealing treatment on the dynamic deformation and the fracture behavior of submicrocrystalline Al-4.4%Mg alloy is investigated in this study. After inducing an effective strain of 8 via equal-channel angular pressing at $200^{\circ}C$, most of the grains are considerably reduced to nearly equiaxed grains of $0.3{\mu}m$ in size. With an increment of various subsequent heat treatments for 1 hour, resultant microstructures are found to be fairly stable at temperatures up to $200^{\circ}C$, suggesting that static recovery will be dominantly operative, whereas grain growth is pronounced above $250^{\circ}C$. The results of tensile tests show that yield and ultimate tensile strength decrease, but elongation-to-failure and strain hardening rate increase with an increase in annealing temperatures. The dynamic deformation and the fracture behavior retrieved with a series of torsional tests are explored with respect to annealed microstructures. Such mechanical response is analyzed in relation to resultant microstructure and fracture mode.

  • PDF

Effect of Annealing Temperature on Dynamic Deformation Behavior of Ultra-Fine-Grained Aluminum Alloys Fabricated by Equal Channel Angular Pressing (ECAP으로 제조된 초미세립 알루미늄 합금의 동적 변형거동에 미치는 어닐링 온도의 영향)

  • Kim, Yang Gon;Ko, Young Gun;Shin, Dong Hyuk;Lee, Chong Soo;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.9
    • /
    • pp.563-571
    • /
    • 2008
  • The influence of annealing treatment on dynamic deformation behavior of ultra-fine grained aluminum alloys was investigated in this study. After equal-channel angular pressing at $200^{\circ}C$, most of the grains were considerably reduced to nearly equiaxed grains of $0.3{\mu}m$ in size. With an increment of various annealing treatments for 1 hour, resultant microstructures were found to be fairly stable at temperatures up to $200^{\circ}C$, suggesting that static recovery would be dominantly operative, whereas grain growth was pronounced above $250^{\circ}C$. The tensile test results showed that yield and ultimate tensile strengths decreased, but elongation-to-failure and strain hardening rate increased with increasing annealing temperature. The dynamic deformation behavior retrieved with a series of torsional tests was explored with respect to annealed microstructures. Such mechanical response was analyzed in relation to resultant microstructure and fracture mode.

Effect of Mechanical Constraints on the Angular Distortion of Welding Joints (용접 각변형에 미치는 구속도의 영향)

  • Park, Jeong Ung;Lee, Jae Won;Lee, Hae Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.547-556
    • /
    • 2001
  • This study presents new method in which to derive the constraint coefficient from the quantity of angular deformation by welding measured by varying the shape of welded joints and the magnitude of constraints by varying the shape of welded joints and the magnitude of constraints by experiment and from the result analyzed by elastic FEM method and then to decide equivalent load with it The numerical analysis results by this new method verified the validity by agreeing with the experimental result on specimen. In addition These results are applicable to the prediction of the quantity of welding deformation for large structures regardless of the size and the shape While in the effects of the constraints based on the shape of welded joints in the case of Butt welding when the constraint coefficients are not considered the deformed quantity is produced larger than one by the experiment and consequently is largely affected by the constraints But in the case of Fillet welding the deformed quantity is seldom affected regardless of considering the constraint coefficients or not.

  • PDF

Can Angular Deformity Due to Sacrococcygeal Fracture Cause Permanent Impairment? : Current State and Problems in Korea

  • Cho, Dosang
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.2
    • /
    • pp.173-179
    • /
    • 2022
  • Disabilities can emerge due to traumatic spinal fractures. In terms of sacrococcygeal spine, because of its unique anatomic structure with minimal movement, the possibility for it to have a disability is relatively low. In Korea, unlike most disability criteria, private insurance companies acknowledge angular deformities caused by vertebral fractures as disabilities according to their degree, so there were several cases where patients required compensation, arguing angular deformity caused by sacrococcygeal fracture, which in some cases led to legal conflicts. Except the Act Welfare of Persons with Disabilities which recognizes only severe angular deformity affecting internal organs as disability and the industrial accident disability evaluation which does not recognize coccygeal fracture as disability but rarely recognizes sacral vertebra deformity equivalent to compressive deformation, there is little or no case where angular deformity is recognized as disability. Given the impairment evaluation standards in social insurance, McBride system, American Medical Association (AMA) guides, and newly proposed standards by the Korean Academy of Medical Sciences (KAMS), the most contentious point in the general terms and conditions of private insurance is spinal deformity. To overcome controversy over disability evaluation, the private insurance sector is now applying criteria for axial skeleton to sacrococcygeal vertebrae through revision of standards. Under these circumstances, it is fair to recognize sacrococcygeal fracture as impairment in terms of the pelvis only when the fracture leaves serious deformity and neurological symptoms with clear relevancy. Though it may not be easy to develop accurate disability evaluation standards, improvement is necessary to remove any irrationalities and make the standards as objective as possible.

A study on the Thermal Deformation of Line Heated TMCP and Normalizing Steel (선상가열한 TMCP 및 Normalizing 강재의 열변형에 관한 연구)

  • Kim, Jeong-Tae;Lee, Kwang-Sung;Jeong, Hyo-Min;Chung, Han-Shik
    • Journal of Power System Engineering
    • /
    • v.20 no.5
    • /
    • pp.46-51
    • /
    • 2016
  • The TMCP steel has expanded in the marine structure during manufacturing process because of its excellent weld-ability and impact toughness. In the case of merchant ships, coverage of TMCP steel has been used widely on over DH36 Classifications material. The line heating process is applied to the outer surface of the steel plate for the shipbuilding. In this study, We compared between TMCP and normalizing steel for shipbuilding by analyzing some basic data through performing the natural cooling after the line heating. The experimental results show the angular misalignment changes in line heating. Heated surface of normalizing steel material expanded to $-0.3^{\circ}$ and reduced to $+0.2^{\circ}$ after cooling. And during cooling at $194^{\circ}C$ for 1,500 seconds, Angular Misalignment began from - direction to + direction, passed the critical point to the default at 2,200 seconds and did not take place any more at $103^{\circ}C$ after the 2,700 seconds. Angular Misalignment results of TMCP steels and Normalizing steel material show same angular misalignment lasted 1,200 seconds, TMCP steel has given more expansion and contraction angle which is $0.2^{\circ}$ than that of the Normalizing steel. Length difference between expansion and contraction is about 0.3 mm.