• 제목/요약/키워드: Angular deformation

검색결과 212건 처리시간 0.03초

Prediction of the welding distortion of large steel structure with mechanical restraint using equivalent load methods

  • Park, Jeong-ung;An, Gyubaek
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권3호
    • /
    • pp.315-325
    • /
    • 2017
  • The design dimension may not be satisfactory at the final stage due to the welding during the assembly stage, leading to cutting or adding the components in large structure constructions. The productivity is depend on accuracy of the welding quality especially at assembly stage. Therefore, it is of utmost importance to decide the component dimension during each assembly stage considering the above situations during the designing stage by exactly predicting welding deformation before the welding is done. Further, if the system that predicts whether welding deformation is equipped, it is possible to take measures to reduce deformation through FE analysis, helping in saving time for correcting work by arresting the parts which are prone to having welding deformation. For the FE analysis to predict the deformation of a large steel structure, calculation time, modeling, constraints in each assembly stage and critical welding length have to be considered. In case of fillet welding deformation, around 300 mm is sufficient as a critical welding length of the specimen as proposed by the existing researches. However, the critical length in case of butt welding is around 1000 mm, which is far longer than that suggested in the existing researches. For the external constraint, which occurs as the geometry of structure is changed according to the assembly stage, constraint factor is drawn from the elastic FE analysis and test results, and the magnitude of equivalent force according to constraint is decided. The comparison study for the elastic FE analysis result and measurement for the large steel structure based on the above results reveals that the analysis results are in the range of 80-118% against measurement values, both matching each other well. Further, the deformation of fillet welding in the main plate among the total block occupies 66-89%, making welding deformation in the main plate far larger than the welding deformation in the longitudinal and transverse girders.

자동차 변속기용 정밀 부품의 용접변형 감소화에 관한 연구 (A Study on the Mitigation of Welding Distortion of a Precision Component for Automobile Transmission)

  • 정회윤;김재웅;윤석철
    • Journal of Welding and Joining
    • /
    • 제30권4호
    • /
    • pp.31-37
    • /
    • 2012
  • In recent years, a demand for precision-welding is increasing in wide industrial fields for getting a high quality welded structures. Although laser welding is commonly used for precision-welding, gas tungsten arc (GTA) welding is also attempted as a precision-welding due to the cost benefit. However, welding heat causes an uneven temperature distribution leading to welding deformation. Since it causes geometric errors and degrades product quality, welding distortion recently rises as an important issue in the field of automobile parts. To control welding deformation, it is needed to design in shapes that can maximize stiffness against deformation during welding; control the welding sequence; minimize heat input; and weld allowing reverse deformation; etc. Thus it is necessary to find the one, among such approaches, that can minimize the deformation range by mathematical analysis and understand how effective it would be when it is actually used in industrial fields. This study performs analyses by numerical calculations and experiments for the De-Tent Lever, one of transmission part that requires precision the most among automobile parts, as the subject of experiment. Decrease in welding deformation is required for this part, since there is currently a trouble in guaranteeing precision due to angular deformation by welding between boss and plate. Finally the ways to minimize welding deformation has been suggested in this study through analyses on it.

등통로각압축 공정에서 금형의 단면형상이 공정에 미치는 영향 (Effects of Sectional Shape of Die During ECAP Process)

  • 고성광;김성용;권숙인;김명호;황선근;채수원
    • 대한기계학회논문집A
    • /
    • 제30권7호
    • /
    • pp.765-772
    • /
    • 2006
  • Much research efforts have been made on the equal channel angular pressing (ECAP) which produces ultra-fine grains. Along with the experiments, the finite element method has been widely employed to investigate the deformation behavior of specimen during ECAP and the effect of process parameters of ECAP. In this paper, sectional shape change has been investigated during ECAP with the pure-Zr, Zr-702 by using three-dimensional finite element analysis. The results have been compared with experimental results.

A Study on Dynamic Crack-Tip Fields in a Strain Softening Material

  • Jang, Seok-Ki;Xiankui Zhu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권4호
    • /
    • pp.494-502
    • /
    • 2003
  • The near-tip field of mode-I dynamic cracks steadily propagating in a strain softening material is investigated under plane strain conditions. The material is assumed to be incompressible and its deformation obeys the $J_2$ flow theory of plasticity. A power-law stress-strain relation with strain softening is adopted to account for the damage behavior of materials near the dynamic crack tip. By assuming that the stresses and strain have the same singularity at the crack tip. this paper obtains a fully continuous dynamic crack-tip field in the damage region. Results show that the stress and strain components the same logarithmic singularity of (In(R/r))$\delta$, and the angular variations of filed quantities are identical to those corresponding to the dynamic cracks in the elastic-perfectly plastic material.

순수 지르코늄의 등통로각압축(ECAP) 공정에 대한 3차원 유한요소해석 (Three Dimensional Finite Element Analysis of ECAP with pure-Zr)

  • 이강무;권기환;채수원;권숙인;김명호;황선근
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.661-665
    • /
    • 2002
  • A lot of investigations have been made in recent years on the equal channel angular pressing (ECAP) which produces ultra-fine grains. The finite element method has been used to investigate this issue. In this paper, pure-Zirconium is considered far ECAP process by three dimensional finite element analysis. The effects of fiction on the deformation behavior have been investigated and compared with two dimensional finite element analysis.

  • PDF

ECAP가공된 7010 Al 합금의 초소성 변형 특성 (Superplastic Deformation Behavior of ECA dressed 7010 Al Alloy)

  • 김지식
    • 소성∙가공
    • /
    • 제11권3호
    • /
    • pp.255-261
    • /
    • 2002
  • The grain size of 7010 Al alloy was refined to submicrometer level by using equal channel angular pressing (ECAP) and additional warm rolling. The mechanisms of grain refinement in ECAP process were fragmentation of coarse grain to ultra fine subgrains after a few passes and continuous recrystallization of the subgrains with the increase o( passes. Because of ultrafine grain size, essentially low temperature and high strain rate superplasticity was observed after ECAP process and warm rolling to form a sheet metal. The maximum elongation of 700% was obtained for an ECA pressed specimen after IS passes without warm rolling at $450^{\circ}C$ with strain rate of 5x$10^{-3}$/sec.

냉장형 모터와 리니어 모터를 적용한 초고속 수평형 머시닝센터의 구조 특성 해석 (Structural Characteristics Analysis of a High-Speed Horizontal Machining Center with Built-in Motor and Linear Motors)

  • 김석일;조재완
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.326-333
    • /
    • 2004
  • This paper presents the structural characteristics analysis of a high-speed horizontal machining center with spindle speed of 50, 000rpm and feedrate of 120m/min. The spindle system is designed based on the built-in motor, angular contact ceramic ball bearings, oil-air lubrication and oil-jacket cooling method. The X-axis and Y-axis feeding systems are composed of the linear motor and linear motion guides, and the Z-axis feeding system is composed of the servo-motor, ball screw and linear motion guide. The structural analysis model of the high-speed horizontal machining center is constructed by the finite element method, and the validity of structural design is estimated based on the structural deformation of the high-speed horizontal machining center and spindle nose caused by the gravity and inertia forces.

  • PDF

ECAP 강소성 가공에 의한 구조재료 초미세립화 (Fabrication of Ultrafine Grained Structure Materials by Equal Channel Angular Pressing)

  • 김우겸;안정용;신동혁;박경태;고영건;이종수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.126-129
    • /
    • 2005
  • Microstructures and tensile properties of low carbon steels, 5083 Al alloy and Ti-6Al-4V alloy fabricated by equal channel angular pressing (ECAP) were examined in order to understand their deformation response associated with a formation of an ultrafine grained (UFG) structure. Room temperature tensile properties of UFG low carbon ferrite/pearlite steels and UFG ferrite/martensite dual phase steel were compared for exploring a feasibility enhancing the strain hardening capability of UFG materials. In addition, low temperature and high strain rate superplasticity of the two grades of the UFG 5083 Al alloy, and Ti-6Al-4V alloy were presented. From the analysis of a series of experiments, it was found that UFG materials exhibited the enhanced mechanical properties compared to coarse grained counterparts.

  • PDF

유체유동 회전 외팔파이프의 안정성에 미치는 끝단질량의 영향 (Stability Analysis of Cracked cantilever beam Subjected to Follower force)

  • 윤한익;손인수;김동진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.121-126
    • /
    • 2007
  • In this paper the vibration system is consisted of a rotating cantilever pipe conveying fluid and a tip mass. The equation of motion is derived applying a modeling method that employs hybrid deformation variables. 'TI1e influences of the rotating angular velocity, mass ratio and the velocity of fluid flow on the stability of a cantilever pipe are studied by the numerical method. The effect of tip mass on the stability of a rotating cantilever pipe are also studied. The influences of a tip mass, the velocity of fluid the angular velocity of a cantilever pipe and the coupling of these factors on the stability of a cantilever pipe are analytically clarified.

  • PDF

Fatigue Properties of Fine Grained Magnesium Alloys after Severe Plastic Deformation

  • Chung Chin-Sung;Chun Duk-Kyu;Kim Ho-Kyung
    • Journal of Mechanical Science and Technology
    • /
    • 제19권7호
    • /
    • pp.1441-1448
    • /
    • 2005
  • Fine grained AZ31 and AZ61 magnesium alloys produced by equal channel angular pressing (ECAP) were tested for investigating tensile and fatigue properties, including microstructure, monotonic tensile flow, fatigue life and crack growth rate. For the two alloys, the yield stress of the ECAPed sample was lower than that of the unECAPed (=as received) sample, because of the fact that the softening effect due to texture anisotropy overwhelmed the strengthening effect due to grain refinement. Grain refinement of the AZ31 and AZ61 alloys through ECAP was found not to be significantly effective in increasing fatigue strength.