• 제목/요약/키워드: Angular Filter

검색결과 120건 처리시간 0.023초

Extended Kalman Filter Based GF-INS Angular Velocity Estimation Algorithm

  • Kim, Heyone;Lee, Junhak;Oh, Sang Heon;Hwang, Dong-Hwan;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제8권3호
    • /
    • pp.107-117
    • /
    • 2019
  • When a vehicle moves with a high rotation rate, it is not easy to measure the angular velocity using an off-the-shelf gyroscope. If the angular velocity is estimated using the extended Kalman filter in the gyro-free inertial navigation system, the effect of the accelerometer error and initial angular velocity error can be reduced. In this paper, in order to improve the navigation performance of the gyro-free inertial navigation system, an angular velocity estimation method is proposed based on an extended Kalman filter with an accelerometer random bias error model. In order to show the validity of the proposed estimation method, angular velocities and navigation outputs of a vehicle with 3 rev/s rotation rate are estimated. The results are compared with estimates by other methods such as the integration and an extended Kalman filter without an accelerometer random bias error model. The proposed method gives better estimation results than other methods.

Fractional-order LβCα Low-Pass Filter Circuit

  • Zhou, Rui;Zhang, Run-Fan;Chen, Di-Yi
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1597-1609
    • /
    • 2015
  • This paper introduces the fundamentals of the conventional LC low-pass filter circuit in the fractional domain. First, we study the new fundamentals of fractional-order LC low-pass filter circuit including the pure real angular frequency, the pure imaginary angular frequency and the short circuit angular frequency. Moreover, sensitivity analysis of the impedance characteristics and phase characteristics of the LC low-pass filter circuit with respect to the system variables is studied in detail, which shows the greater flexibility of the fractional-order filter circuit in designs. Furthermore, from the filtering property perspective, we systematically investigate the effects of the system variables (LC, frequency f and fractional orders) on the amplitude-frequency characteristics and phase-frequency characteristics. In addition, the detailed analyses of the cut-off frequency and filter factor are presented. Numerical experimental results are presented to verify the theoretical results introduced in this paper.

Directional Particle Filter Using Online Threshold Adaptation for Vehicle Tracking

  • Yildirim, Mustafa Eren;Salman, Yucel Batu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권2호
    • /
    • pp.710-726
    • /
    • 2018
  • This paper presents an extended particle filter to increase the accuracy and decrease the computation load of vehicle tracking. Particle filter has been the subject of extensive interest in video-based tracking which is capable of solving nonlinear and non-Gaussian problems. However, there still exist problems such as preventing unnecessary particle consumption, reducing the computational burden, and increasing the accuracy. We aim to increase the accuracy without an increase in computation load. In proposed method, we calculate the direction angle of the target vehicle. The angular difference between the direction of the target vehicle and each particle of the particle filter is observed. Particles are filtered and weighted, based on their angular difference. Particles with angular difference greater than a threshold is eliminated and the remaining are stored with greater weights in order to increase their probability for state estimation. Threshold value is very critical for performance. Thus, instead of having a constant threshold value, proposed algorithm updates it online. The first advantage of our algorithm is that it prevents the system from failures caused by insufficient amount of particles. Second advantage is to reduce the risk of using unnecessary number of particles in tracking which causes computation load. Proposed algorithm is compared against camshift, direction-based particle filter and condensation algorithms. Results show that the proposed algorithm outperforms the other methods in terms of accuracy, tracking duration and particle consumption.

Solution and Estimate to the Angular Velocity of INS Formed only by Linear Accelerometers

  • Junwei, Wu;Jinfeng, Liu;Yunan, Zhang;Na, Yuan
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.103-107
    • /
    • 2006
  • At present, most efforts tend to develop a INS which is only based linear accelerometers, because of the low cost micro-machining gyroscopes lack of the accuracy needed for precise navigation application and possible achieving the required levels of precise for micro-machining accelerometer. Although it was known in theory that a minimum of six accelerometers are required for a complete description of a rigid body motion, and any configuration of six accelerometers (except for a "measure zero " set of six-accelerometer schemes) will work. Studies on the feasible configuration of GF-INS indicate that the errors of angular velocity resolved from the six accelerometers scheme are diverged with time or have multi solutions. The angular velocity errors are induced by the biases together with the position vectors of the accelerometers, therefore, in order to treat with the problem just mentioned, researchers have been doing many efforts, such as the extra three accelerometers or the magnetometers may be taken as the reference information, the extended Kalman filter (EKF) involved to make the angular velocity errors bound and be estimated, and so on. In this paper, the typical configurations of GF-INS are introduced; for each type GF-INS described, the solutions to the angular velocity and the specific force are derived and the characteristic is indicated; one of the corresponding extend Kalman filters are introduced to estimate the angular errors; parts of the simulation results are presented to verify the validity of the equations of angular velocity and specific force and the performance of extend Kalman filter.

  • PDF

Direction-Based Modified Particle Filter for Vehicle Tracking

  • Yildirim, Mustafa Eren;Ince, Ibrahim Furkan;Salman, Yucel Batu;Song, Jong Kwan;Park, Jang Sik;Yoon, Byung Woo
    • ETRI Journal
    • /
    • 제38권2호
    • /
    • pp.356-365
    • /
    • 2016
  • This research proposes a modified particle filter to increase the accuracy of vehicle tracking in a noisy and occluded medium. In our proposed method for vehicle tracking, the direction angle of a target vehicle is calculated. The angular difference between the motion direction of the target vehicle and each particle of the particle filter is observed. Particles are filtered and weighted depending on their angular distance to the motion direction. Those particles moving in a direction similar to that of the target vehicle are assigned larger weights; this, in turn, increases their probability in a given likelihood function (part of the process of estimation of a target's state parameters). The proposed method is compared against a condensation algorithm. Our results show that the proposed method improves the stability of a particle filter tracker and decreases the particle consumption.

패턴분류를 위한 Off-axis pSDF 공간정합필터 (Off-axis pSDF Spatial Matched Filter for Pattern Classification)

  • 임종태;박한규;김명수;김성일
    • 한국광학회지
    • /
    • 제2권2호
    • /
    • pp.83-88
    • /
    • 1991
  • 공간불변(space-invariant) 패턴인식에 대한 연구는 여러 접근방식에서 많은 시도가 이루어지고 있다. 학습 이미지의 가중치 선형조합(weighted linear summation)에 의한 SDF(synthetic discriminant function) 필터를 이용한 패턴인식은 그 중의 한 방식으로서 꾸준히 많은 관심을 받고 있다. 본 논문에서는 off-axis 평면기준파의 각분할(angular multiplexing) 방식과 pseude-inverse 알고리듬에 의한 pSDF 필터를 결합하여 상관기를 구성하고 상관면에서의 상관반응을 관측하여, off-axis pSDF 공간정합필터가 유형분류에 유용함을 입증하고, 광상관기로의 적용가능성을 보여주고자 한다.

  • PDF

반작용휠을 이용한 자이로 미탑재 위성의 자세결정 기법 (Attitude Determination for Gyroless Spacecraft Using Reaction Wheels)

  • 박성용;김영욱;이현재
    • 한국항공우주학회지
    • /
    • 제44권10호
    • /
    • pp.853-861
    • /
    • 2016
  • 본 연구에서는 자이로 미탑재 위성의 자세와 각속도를 결정하기 위해 반작용휠 각속도 정보를 활용하는 기법에 대하여 다룬다. 제안하는 알고리즘은 실제 궤도환경 조건에서도 위성의 자세와 각속도를 최적 추정 및 결정할 수 있도록 반작용횔의 각속도를 활용하여 확장칼만필터를 기반으로 설계하였다. 더욱이, 고려한 조건 중 하나인 외부교란의 추정도 같이 수행할 수 있도록 구성하였다. 알고리즘의 성능검증을 위해 수치 시뮬레이션을 수행하였으며, 반작용휠의 장착형태는 일반적으로 많이 사용되는 피라미드 형상을 가정하였다. 시뮬레이션 결과로부터 알고리즘의 성능과 타당성을 검증하였다.

Practical Pinch Torque Detection Algorithm for Anti-Pinch Window Control System Application

  • Lee, Hye-Jin;Ra, Won-Sang;Yoon, Tae-Sung;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2526-2531
    • /
    • 2005
  • A practical pinch torque estimator based on the Kalman filter is proposed for low-cost anti-pinch window control systems. To obtain the accurate angular velocity from Hall-effect sensor measurements, the angular velocity calculation algorithm is executed with additional procedures for removing the measurement noises. Apart from the previous works using the angular velocity estimates and torque estimates for detecting the pinched condition, the torque rate is augmented to the system model and the proposed pinch estimator is derived by applying the steady-state Kalman filter recursion to the model. The motivation of this approach comes from the idea that the bias errors in torque estimates due to the motor parameter uncertainties can be almost eliminated by introducing the torque rate state. For detecting the pinched condition, a systematic way to determine the threshold level of the torque rate estimates is also suggested via the deterministic estimation error analysis. Simulation results are given to certify the pinch detection performance of the proposed algorithm and its robustness against the motor parameter uncertainties.

  • PDF

Ring Laser Gyro를 이용한 ARS에 관한 연구 (Study of ARS using Ring Laser Gyro)

  • 정상기;최형식;지대형;정동욱;권오순;신창주;서정민
    • 한국해양공학회지
    • /
    • 제31권2호
    • /
    • pp.164-169
    • /
    • 2017
  • Studies were performed on an ARS using SDINS's RLG and the geomatic sensor. To develop the ARS, experiments were performed to determine the characteristics of the RLG and geomatic sensor. Based on the results, to reduce the angular position errors of the RLG, which accumulate from the angular velocity data, an algorithm was studied that uses the Extended Kalman filter (EKF) to compensate the RLG data and geomatic sensor data. To verify the performance of the developed algorithm for reducing the cumulative angular errors, experiments that included the developed EKF were performed. Through these, it was shown that a drastic reduction in the angular errors of the RLG were achieved.

쿼드로터 자세 안정화를 위한 센서융합 기반 3중 중첩 PID 제어기 (A Triple Nested PID Controller based on Sensor Fusion for Quadrotor Attitude Stabilization)

  • 조영완
    • 전기학회논문지
    • /
    • 제67권7호
    • /
    • pp.871-877
    • /
    • 2018
  • In this paper, we propose a triple nested PID control scheme for stable hovering of a quadrotor and propose a complementary filter based sensor fusion technique to improve the performance of attitude, altitude and velocity measurement. The triple nested controller has a structure in which a double nested attitude controller that has the angular velocity PD controller in inner loop and the angular PI controller in outer loop, is nested in a velocity control loop to enable stable hovering even in the case of disturbance. We also propose a sensor fusion technique by applying a complementary filter in order to reduce the noise and drift error included in the acceleration and gyro sensor and to measure the velocity by fusing image, gyro, and acceleration sensor. In order to verity the performance, we applied the proposed control and measurement scheme to hovering control of quadrotor.