• 제목/요약/키워드: Angular Acceleration

검색결과 202건 처리시간 0.032초

Observability Analysis of Alignment Errors in GPS/INS

  • Lee Mun Ki;Hong Sinpyo;Lee Man Hyung;Kwon Sun-Hong;Chun Ho-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • 제19권6호
    • /
    • pp.1253-1267
    • /
    • 2005
  • Misalignment can be an important problem in the integration of GPS/INS. Observability analysis of the alignment errors in the integration of low-grade inertial sensors and multi-antenna GPS is presented in this paper. A control-theoretic approach is adopted to study the observability of time-varying error dynamics models. The relationship between vehicle motions and the observability of the errors in the lever arm and relative attitude between GPS antenna array and IMU is given. It is shown that alignment errors can be made observable through maneuvering. The change of acceleration makes the components of the relative attitude error that are orthogonal to the direction of the acceleration change observable. The change of angular velocity makes the components of the lever arm error that are orthogonal to the direction of the angular velocity observable. The motion of constant angular velocity has no influence on the estimation of the lever arm.

스텝 에어로빅에서 박스 높이 변화에 따른 하지관절의 운동학적 분석 (The Kinematic Analysis of the Lower Extremity Joint According to the Changes in Height of Box during Step Aerobics)

  • 김규수;소재무;김윤지;여홍철
    • 한국운동역학회지
    • /
    • 제24권1호
    • /
    • pp.67-74
    • /
    • 2014
  • This study researched into the left-right inclination of the rear foot at the lower limb joints, knee joint angle, angular velocity of the knee joint, angular acceleration and the max. Based on the analysis of kinematics according to the changes in the height of step box (6, 8, 10 inches) during step aerobics of female college students majoring in physical education. The findings of this study are as follows: Then angle of the knee joint decreased as the height of the step box increased the min. Angle was measured right before the right foot was on the step box, and the angle tended to decrease as the step box get heightened. The left-right inclination of the rearfoot angle according to the height of step box increased as the height increased. In the 'pull-up' stage during which the weight was loaded on the right foot the angle increased, while in the right foot stepping stage during which the right foot was on the ground, the left-right inclination of the rearfoot angle increased as the height of the step box increased. The angular velocity of the knee joint according to the height of step box started increasing when the right foot initially stepped on the step box and during the initial stepping section, the angular velocity decreased as the height of step box increased. The changes in angular acceleration of the knee joint according to the height of step box increased as the height of step box increased.

스키 시뮬레이터 운동 시 하지 운동특성 분석 및 관성센서 파라미터를 이용한 스키 숙련도 평가 (Kinematic Analysis of Lower Extremity and Evaluation of Skill of Skier Using Parameters of Inertial Sensors During Ski Simulator Exercise)

  • 김정윤;안순재;박선우;신이수;김규석;김영호
    • 대한의용생체공학회:의공학회지
    • /
    • 제35권3호
    • /
    • pp.35-41
    • /
    • 2014
  • In this study, joint angles of the lower extremity and inertial sensor data such as accelerations and angular velocities were measured during a ski simulator exercise in order to evaluate the skill of skiers. Twenty experts and twenty unskilled skiers were recruited for the study. All expert skiers held the certificates issued by the Korea Ski Instructors Association. A three-dimensional motion capture system and two inertial sensors were used to acquire joint movements, heel acceleration and heel angular velocity during ski simulator exercises. Pattern variation values were calculated to assess the variations in ski simulator motion of expert and unskilled skiers. Integral ratio of roll angular velocity was calculated to determine the parallel alignment of the two feet. Results showed that ski experts showed greater range of motion of joint angle, peak-to-peak amplitude(PPA) of heel acceleration and PPA of heel angular velocity than unskilled skiers. Ski experts showed smaller pattern variations than unskilled skiers. In addition, the integral ratio of roll angular velocity in ski experts was closer to 1. Inertial sensor data measurements during the ski simulator exercises could be useful to evaluate the skill of the skier.

각가속도계 센서를 이용한 장애인용 컴퓨터 2차원 입력장치의 구현 (Implementation of Computer Device of 2dimension Input for the disabled Using a Angular Acceleration Sensor)

  • 정상봉;한성현
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.837-840
    • /
    • 1998
  • In this paper, we designed the computer input device for rehabilitation of people with hand disabilities. This input device is made up of two Gyrostar sensors attached in the orthnormal directions of x, y axes. Gyrostar is a sensor for angular Acceleration. This device is attached by the user's head side. Head movement is detected by analysing and processing the output wave signals from the sensors therefore enabling the user to move the mouse pointer that helps to operate the computer. This method does not necessitate a complex hardware or a long installation process, which was formerly the case, and uses real time algorithms which enables simple emulation of a computer mouse. The interface of this device and the mouse are the same.

  • PDF

반작용 휠의 LQR 제어를 통한 Cubli 프레임의 균형유지 (Balancing the Cubli Frame with LQR-controlled Reaction Wheel)

  • 김용훈;박준모;한승오
    • 센서학회지
    • /
    • 제27권3호
    • /
    • pp.165-169
    • /
    • 2018
  • A single-axis Cubli frame realized simply with an IMU sensor and DC motor is presented herein. To maintain the balance on the Cubli frame, an LQR controller based on a Lagrangian derivation of the dynamics was designed, which utilized the state variables of the frame angle and its angular acceleration, as well as the wheel angle and its angular acceleration. The designed LQR controller showed a settling time balancing capability of approximately two seconds and 40% of the maximum overshoot in Matlab/Simulink simulations. Our experimental results of the fabricated Cubli frame matched with the simulation results. It maintained balancing at the reference position even though an initial offset as well as external disturbance during the balancing was applied.

SDINS의 좌표축 초기 직립에 관한 칼만 필터링 기법의 응용 (Application of Kalman Filtering Technique to Initial Axes Erection of SDINS)

  • 최근국;이만형;김중완
    • 한국정밀공학회지
    • /
    • 제4권4호
    • /
    • pp.56-71
    • /
    • 1987
  • Determination of navigation variables (latitude, longitude, and altitude) near the earth's surface is termed 'Terrestrial Navigation'. The quantities that are measured inertially are the total acceleration (or the integral fo this acceleration over a fixed time interval) and the total angular rate (or the integral of this angular rate over the same time interval). These measurements when suitably compensated can be manipulated to yield the navigation variables. Hence, it is essential that the initial values of position, orientation and velocity are accurately set up during the initial alignment process. Initial alignment of gimballed inertial navigation system ( GINS) is accomplished by gyrocompassing techniques. These cannot be used, in the case of strapdown inertial navigation system(SDINS), where the inertial instruments are directly strapped down to a vehicle frame. The basic objective of this paper is the development of digital method for the determination of the initial axes erection of a SDINS from vibration and sway currupted data on the launch pad.

  • PDF

쿼드로터 자세 안정화를 위한 센서융합 기반 3중 중첩 PID 제어기 (A Triple Nested PID Controller based on Sensor Fusion for Quadrotor Attitude Stabilization)

  • 조영완
    • 전기학회논문지
    • /
    • 제67권7호
    • /
    • pp.871-877
    • /
    • 2018
  • In this paper, we propose a triple nested PID control scheme for stable hovering of a quadrotor and propose a complementary filter based sensor fusion technique to improve the performance of attitude, altitude and velocity measurement. The triple nested controller has a structure in which a double nested attitude controller that has the angular velocity PD controller in inner loop and the angular PI controller in outer loop, is nested in a velocity control loop to enable stable hovering even in the case of disturbance. We also propose a sensor fusion technique by applying a complementary filter in order to reduce the noise and drift error included in the acceleration and gyro sensor and to measure the velocity by fusing image, gyro, and acceleration sensor. In order to verity the performance, we applied the proposed control and measurement scheme to hovering control of quadrotor.

동작 분석기 개발을 위한 Mark의 위치 검출 알고리즘 개발 (A Detection Algorithm of the Position of Marks for the Development of Motion Analyzer)

  • 김성호;이성희;김민기
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1994년도 춘계학술대회
    • /
    • pp.32-34
    • /
    • 1994
  • An automatic multiframe procedure for tracking signalized points on multiple, differently moving discontinuous surface is described. The position of markers which attached on human body give us some important information such as velocity, acceleration, angular velocity and angular acceleration, etc, of the rigid objects. Generally, the detected objects occufying some area in images rather than a point because of the generic size of the marks or the smeared effects of the camera. To solve the problem we used a modified clustering algorithm.

  • PDF

Calculating Dynamic Derivatives of Flight Vehicle with New Engineering Strategies

  • Mi, Baigang;Zhan, Hao;Chen, Baibing
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권2호
    • /
    • pp.175-185
    • /
    • 2017
  • This paper presents new differential methods for computing the combined and single dynamic stability derivatives of flight vehicle. Based on rigid dynamic mesh technique, the combined dynamic stability derivative can be achieved by imposing the aircraft pitching to the same angle of attack with two different pitching angular velocities and also translating it to the same additional angle of attack with two different rates of angle of attack. As a result, the acceleration derivative is identified. Moreover, the rotating reference frame is adopted to calculate the rotary derivatives when simulating the steady pull-up with different pitching angular velocities. Two configurations, the Hyper Ballistic Shape (HBS) and Finner missile model, are considered as evaluations and results of all the cases agree well with reference or experiment data. Compared to traditional ones, the new differential methods are of high efficiency and accuracy, and potential to be extended to the simulation of combined and single stability derivatives of directional and lateral.

이족로봇의 경사면 균형 유지와 보행에 관한 연구 (A Study about Stable Walking and Balancing of Biped Robot in a Slope)

  • 오성남;윤동우;손영익;김갑일;임승철;강환일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.542-544
    • /
    • 2006
  • This paper aims to provide a way to improve dynamic stability of biped robots against undesirable disturbances and in a slope. By using an angular velocity sensor and an acceleration sensor on its waist, we can make a medium-sized biped robot walk stably in a slope against impulsive disturbances. In addition, it is possible for the robot to walk stably in an unknown slope. The measured signals from the sensor are used for compensating the reference angles of ankle, knee, and pelvis joints. Some experiments show that the stability of the robot is much enhanced by using cheat sensors and a simple algorithm. This work helps bided robots walk more stably in real environments.

  • PDF